Objectif

Examiner les dégénérescences du modèle de couche limite interactive.

Dans quelles conditions retrouve-t-on le modèle de triple couche, le modèle de couche limite de Prandtl, le modèle de Van Dyke au second ordre, etc.

Méthode

On utilise des développements réguliers quand c'est nécessaire. Modèle réduit pour un écoulement extérieur irrotationnel

Approximation uniformément valable

$$u = u_1 + U_1$$
$$v = v_1 + \varepsilon V_1$$

Dans la couche limite

$$y = O(\varepsilon)$$
 ; $\varepsilon = R^{-1/2}$

Développement limité de u_1 dans la couche limite

$$u_{1} = u_{10} + y \left(\frac{\partial u_{1}}{\partial y}\right)_{y=0} + \dots$$
$$\frac{\partial u_{1}}{\partial x} = u_{1x0} + y \left(\frac{\partial^{2} u_{1}}{\partial x \partial y}\right)_{y=0} + \dots$$

Développement de v_1

$$v_1 = v_{10} + y \left(\frac{\partial^2 u_1}{\partial x \partial y}\right)_{y=0} + \ldots = v_{10} - y u_{1x0} + \ldots$$

Écoulement extérieur irrotationnel, courbure de paroi négligée

$$\frac{\partial u_1}{\partial y} - \frac{\partial v_1}{\partial x} = 0$$

Or, dans la couche limite $v_1 = O(\varepsilon)$ d'où $\frac{\partial u_1}{\partial y} = O(\varepsilon)$ On obtient

$$u_{1} = u_{10} + O(\varepsilon^{2})$$

$$\frac{\partial u_{1}}{\partial x} = u_{1x0} + O(\varepsilon^{2})$$

$$v_{1} = v_{10} - yu_{1x0} + O(\varepsilon^{3}) \quad \text{car} \quad \frac{\partial^{2} v_{1}}{\partial y^{2}} = O(\varepsilon)$$

Approximations valables dans la couche limite

$$u = u_1 + U_1$$

= $\underbrace{u_{10} + U_1}_{U} + O(\varepsilon^2)$
$$v = v_1 + \varepsilon V_1$$

= $\underbrace{v_{10} - yu_{1x0} + \varepsilon V_1}_{\varepsilon V} + O(\varepsilon^3)$

Équations de couche limite, d'après les équations de couche limite interactive au 1^{er}ordre

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial Y} = 0$$
$$U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial Y} = u_{10}\frac{du_{10}}{dx} + \frac{\partial^2 U}{\partial Y^2}$$

Écoulement extérieur

Équations d'Euler ou équation du potentiel (écoulement irrotationnel)

$$\Delta \phi = 0$$
$$u_1 = \frac{\partial \phi}{\partial x}$$
$$v_1 = \frac{\partial \phi}{\partial y}$$

Conditions aux limites

paroi Y = 0 : U = 0 ; V = 0

infini $y \to \infty$: l'écoulement devient uniforme

Conditions de raccord

 $\begin{array}{rcl} Y \to \infty & : & u - u_1 \to 0 & \lim_{Y \to \infty} U = u_{10} \\ & & d' \circ \tilde{u} \end{array}$ $\begin{array}{rcl} Y \to \infty & : & v - v_1 \to 0 \end{array} & \lim_{Y \to \infty} (V + Y U_{1x0}) = \frac{v_{10}}{\varepsilon} \end{array}$

Les équations de couche limite et de l'écoulement extérieur sont couplées par la condition sur *v*.

Pas de hiérarchie entre les deux systèmes.

Conclusion

1. Deux régions : une zone d'écoulement non visqueux et une zone de couche limite

2. Couplage fort assuré par la condition de raccord sur la vitesse verticale (développement généralisé).

3 . Justification rationnelle des méthodes numériques de couplage fort (capables de prendre en compte des décollements)

Modèle de Prandtl

Couche limite interactive, écoulement extérieur irrotationnel

Développements de v

$$v = v_1(x, y, \varepsilon) + \dots$$

 $v = \varepsilon V(x, Y, \varepsilon) + \dots$

Dépendance par rapport à ε : condition de raccord

$$\lim_{Y\to\infty}(V+Yu_{1x0})=\frac{v_{10}}{\varepsilon}$$

Développements réguliers

$$v = v_1(x, y) + \dots$$

 $v = \varepsilon V(x, Y) + \dots$

et la condition de raccord devient

 $v_{10} = 0$

On retrouve la couche limite de Prandtl.

Méthode de calcul

On calcule d'abord l'écoulement non visqueux avec

 $v_{10} = 0$

On calcule ensuite la couche limite avec

 $\lim_{Y\to\infty} U = u_{10}$

Écoulement extérieur d'ordre 2

$$u = u_1(x, y) + u_2(x, y) + \dots$$

 $v = v_1(x, y) + v_2(x, y) + \dots$

 u_2, v_2 : équations d'Euler linéarisées. Condition de raccord

Système hiérarchisé

1. Calcul de l'écoulement non visqueux d'ordre 1 autour du profil réel avec $v_{10} = 0$

- **2**. Calcul de la couche limite avec $u_e = u_{10}$
- 3. Calcul de l'écoulement non visqueux d'ordre 2 avec

$$v_2(x,0) = \lim_{Y \to \infty} \left[V - Y \left(\frac{\partial v_1}{\partial y} \right)_{y=0} \right]$$

Conclusion

Les développements *réguliers*, y compris la condition de raccord sur la vitesse verticale, fournissent le modèle hiérarchisé de couplage faible.

Les équations de couche limite présentent une singularité au décollement.

Modèle de triple couche

AUV pour le modèle réduit avec un écoulement extérieur irrotationnel

$$u_{a} = U + u_{1} - u_{10}$$

$$v_{a} = \varepsilon V + v_{1} - v_{10} + y u_{1x0}$$

$$\left(\frac{\partial p}{\partial y}\right)_{a} = \varepsilon \frac{\partial P}{\partial y} + p_{1y} - p_{1y0} - y p_{1yy0}$$

U, V : équations de couche limite u_1, v_1 : équations d'Euler

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial Y} = 0$$
$$U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial Y} = u_{10}\frac{du_{10}}{dx} + \frac{\partial^2 U}{\partial Y^2}$$

$$\frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} = 0$$
$$u_1 \frac{\partial u_1}{\partial x} + v_1 \frac{\partial u_1}{\partial y} = -\frac{\partial p_1}{\partial x}$$
$$u_1 \frac{\partial v_1}{\partial x} + v_1 \frac{\partial v_1}{\partial y} = -\frac{\partial p_1}{\partial y}$$

Conditions de raccord

$$\lim_{Y \to \infty} U = u_{10}$$
$$\lim_{Y \to \infty} (V + Y u_{1x0}) = \frac{v_{10}}{\varepsilon}$$

Modèle de triple couche

Développement réguliers

$$X = \frac{x - x_0}{\varepsilon^{3/4}}$$

• Couche supérieure

 $\Upsilon^* = \frac{y}{\varepsilon^{3/4}}$

$$\mathcal{U} = 1 + \varepsilon^{1/2} U_1^*(X, Y^*) + \cdots$$
$$\mathcal{V} = \varepsilon^{1/2} V_1^*(X, Y^*) + \cdots$$
$$\mathcal{P} = \varepsilon^{1/2} P_1^*(X, Y^*) + \cdots$$

• Couche principale

 $Y = \frac{y}{\varepsilon}$

$$\mathcal{U} = U_0(Y) + \varepsilon^{1/4} U_1(X, Y) + \cdots$$
$$\mathcal{V} = \varepsilon^{-1/2} V_1(X, Y) + \cdots$$
$$\mathcal{P} = \varepsilon^{-1/2} P_1(X, Y) + \cdots$$

• Couche inférieure

 $\widetilde{Y} = \frac{y}{\varepsilon^{5/4}}$

$$\mathcal{U} = \varepsilon^{1/4} \widetilde{U}_1(X, \widetilde{Y}) + \cdots$$
$$\mathcal{V} = \varepsilon^{-1/4} \widetilde{V}_1(X, \widetilde{Y}) + \cdots$$
$$\mathcal{P} = \varepsilon^{-1/2} \widetilde{P}_1(X, \widetilde{Y}) + \cdots$$

On retrouve exactement la formulation de la triple couche grâce à la condition

$$\lim_{Y\to\infty}(V+Yu_{1x0})=\frac{v_{10}}{\varepsilon}$$

AUV pour la couche limite interactive au 2^e ordre

$$u = u_1(x, y, \varepsilon) + U_1(x, Y, \varepsilon)$$

$$v = v_1(x, y, \varepsilon) + \varepsilon V_1(x, Y, \varepsilon)$$

$$p = p_1(x, y, \varepsilon + \varepsilon^2 P_1(x, Y, \varepsilon))$$

Équations

$$\begin{cases} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0\\ u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = u_1\frac{\partial u_1}{\partial x} + v_1\frac{\partial u_1}{\partial y} + \frac{1}{\mathcal{R}}\frac{\partial^2(u-u_1)}{\partial y^2} \end{cases}$$

$$\begin{cases} \frac{\partial u_1}{\partial x} + \frac{\partial v_1}{\partial y} = 0\\ u_1 \frac{\partial u_1}{\partial x} + v_1 \frac{\partial u_1}{\partial y} = -\frac{\partial p_1}{\partial x}\\ u_1 \frac{\partial v_1}{\partial x} + v_1 \frac{\partial v_1}{\partial y} = -\frac{\partial p_1}{\partial y} \end{cases}$$

Conditions aux limites

à la paroi :
$$u = 0$$
 , $v = 0$
 $y \rightarrow \infty$: $u - u_1 \rightarrow 0$, $v - v_1 \rightarrow 0$

+ conditions d'écoulement uniforme pour le champ décrit par les équations d'Euler.

Développements réguliers

Région	$u_1 = \widehat{u}_1(x,y) + \varepsilon \widehat{u}_2(x,y) + \dots$
extérieure	$v_1 = \widehat{v}_1(x,y) + \varepsilon \widehat{v}_2(x,y) + \varepsilon^2 \widehat{v}_3(x,y) + \dots$
	$p_1 = \widehat{p}_1(x,y) + \varepsilon \widehat{p}_2(x,y) + \dots$
Dans la	$u = \overline{u}_1(x, Y) + \varepsilon \overline{u}_2(x, Y) + \dots$

Couche limite

$$u = \overline{u}_1(x, Y) + \varepsilon \,\overline{u}_2(x, Y) + \dots$$

$$v = \varepsilon \,\overline{v}_1(x, Y) + \varepsilon^2 \,\overline{v}_2(x, Y) + \dots$$

Conditions de raccord

$$\lim_{\substack{Y \to \infty}} \overline{u}_1 = \widehat{u}_1(x,0)$$
$$\widehat{v}_1(x,0) = 0$$
$$\lim_{Y \to \infty} \left[\overline{u}_2 - Y \left(\frac{\partial \widehat{u}_1}{\partial y} \right)_{y=0} \right] = \widehat{u}_2(x,0)$$
$$\lim_{Y \to \infty} \left[\overline{v}_1 - Y \left(\frac{\partial \widehat{v}_1}{\partial y} \right)_{y=0} \right] = \widehat{v}_2(x,0)$$

On retrouve le modèle de Van Dyke au 2^eordre avec prise en compte d'un écoulement extérieur rotationnel.

$\underline{\text{Conclusion}}(1)$

FIGURE 15 – Approximations à grand nombre de Reynolds.

Conclusion (2)

FIGURE 16 – Approximations à grand nombre de Reynolds.

FIGURE 17 – Couche limite sur une plaque plane avec bosse

$$\frac{y}{L} = \pm \frac{0.03}{\cosh\left[4\left(\frac{x}{L} - 2.5\right)\right]}$$

FIGURE 18 – Méthode de calcul.

Méthode itérative

$$(u_e)^n = (u_{es})^{n-1} - (\delta u_e)^{n-1} + (\delta u_e)^n$$

*u*_{es} : méthode des singularités

$$\delta u_e = \frac{1}{\pi} \int_{x_a}^{x_b} \frac{v_s}{x - \xi} d\xi \quad ; \quad v_s(\xi) = \frac{d}{d\xi} \left[u_e(\xi) \delta_1(\xi) \right]$$

FIGURE 19 – Couche limite sur plaque plane avec bosse : vitesse pariétale de l'écoulement non visqueux.

$$\frac{u_{\infty}L}{\nu} = 8 \ 10^4$$

FIGURE 20 – Couche limite sur plaque plane avec bosse : épaisseur de déplacement.

FIGURE 21 – Couche limite sur plaque plane avec bosse : coefficient de frottement.

FIGURE 22 – Écoulement autour d'une plaque plane de longueur finie

FIGURE 23 – Coefficient de traînée de la plaque plane

Profil NACA 0012 $\mathcal{R}_c = 3 \times 10^6$

Profil NACA 0012 (a) $\mathcal{R}_c = 6 imes 10^6$, et (b) $\mathcal{R}_c = 9 imes 10^6$

FIGURE 26 – Couche limite sur plaque plane avec écoulement extérieur rotationnel.

FIGURE 27 – Écoulement incident : $\overline{u}_e = 1 + 60y$.

FIGURE 28 - Écoulement incident : $\overline{u}_e = 0,85 + \sqrt{0,0225 + 18y}$.

Conclusion

– La théorie de « Couche limite interactive » apporte une justification rationnelle aux méthodes numériques de couplage fort

– La notion d'interaction est essentielle pour le calcul d'écoulements avec décollement

– La théorie de couche limite interactive contient la théorie de triple couche et les théories standard de couche limite

– Permet d'analyser les résultats issus de la solution des équations de Navier-Stokes