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Abstract

In this paper, we present a non-linear one-dimensional model for thin-walled rods with open strongly curved cross-section, obtained by
asymptotic methods. A dimensional analysis of the non-linear three-dimensional equilibrium equations lets appear dimensionless numbers
which reflect the geometry of the structure and the level of applied forces. For a given force level, the order of magnitude of the displacements
and the corresponding one-dimensional model are deduced by asymptotic expansions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The interest of thin-walled rods in industry is known since a
long time: they provide a maximum of stiffness with a minimum
of weight. Whereas in linear elasticity Vlassov model is the
one classically used by engineers [1,2], in non-linear elasticity
it does not seem to exist any classical model. However, for
moderate and large displacements, it is important for engineers
to have non-linear models and to know precisely their domain
of validity. Such models are necessary to study the buckling
and the post-critic behavior of thin-walled rods.1

The non-linear models of thin-walled rods existing in the lit-
erature are generally deduced with an approach based on a pri-
ori assumptions: Vlassov kinematics assumptions are extended
to moderate and large rotations [3–8]. The expression of the
displacement field so obtained is then introduced in the elas-
tic strain energy of the rod. However, the obtained equilibrium
equations are strongly non-linear and coupled. So that sup-
plementary assumptions are generally made to neglect some

∗ Corresponding author. Tel.: +33 5 46 45 82 79; fax: +33 5 46 82 41.
E-mail address: ahamdoun@univ-lr.fr (A. Hamdouni).

1 We recall that linear models enable to access to the critical load but
not to the post-critic behavior.
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high-order terms according to the physical phenomenon stud-
ied. For an example, to model the “shortening effect” observed
for large rotations, Ghobarah and Tso [4] have neglected the
non-linear bending terms. They obtained a cubic model with
respect to the twist angle �. An extension to the previous de-
marche to profiles with variable sections has been proposed in
[6,9]. More recently, Mohri et al. [10] used a general non-linear
model2 to study the “shortening effect” on the post-critic be-
havior of thin-walled rods. On the other hand, the generalized
beam theory developed by Davies and Leach in linear elas-
ticity [11] has been extended to a non-linear behavior [12].
Finally, let us notice other works where a linear Vlassov kine-
matics is coupled with a non-linear expression of the strain
tensor [13,14]. In this case the domain of validity of the ob-
tained model is difficult to specify.

The limitations of these approaches relying on a priori as-
sumptions are twice in the non-linear case. One hand, the
Saint-Venant Kirchoff constitutive law used leads to the same
contradiction as in the linear case.3 On the other hand, most

2 No supplementary assumption is made to neglect a priori non-linear
terms in equilibrium equations.

3 Indeed, the transverse shear Et3 is assumed to be equal to zero (this
constitutes the non-distortion assumption) whereas the corresponding shear
stress �t3 is different from zero. This is in contradiction with the elastic
constitutive law used.
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of the authors make a priori supplementary assumptions to sim-
plify the non-linear equilibrium equations obtained. Therefore
it does not seem to exist a classical non-linear model in thin-
walled rod theory whose domain of validity can be specify
precisely.

In plate and shell theory, there exist many works based on
asymptotic methods whose goal is to justify rigorously clas-
sical linear and non-linear models [15–21]. In linear theory
of beams, the first works on the subject are due to Rigolot
[22]. More recently, other justifications of linear and non-linear
beam models by asymptotic expansion have been developed in
[23–26] in the framework of isotropic elasticity. In the case of
anisotropic or heterogeneous linear elastic beams, higher-order
approximations based on asymptotic methods have been pro-
posed in [27–29].

In the linear case, an extension of the previous works to
thin-walled rods has been proposed in [30,31]. It is based on
the asymptotic behavior of Poisson equation in a thin domain
when the thickness tends towards zero [32]. Let us cite also
[33] where a model for thin-walled beam is deduced from the
linear Koiter shell model.

However, in non-linear elasticity, there exists nearly no work
concerning the asymptotic justification of non-linear models of
thin-walled rods. Let us only cite the generalized finite-element-
based beam formulation [34] based on the variational asymp-
totic method developed by Berdichevsky [35]. This variational
asymptotic method has been also applied by Hodges et al. [36]
to the geometrically non-linear anisotropic elasticity problem to
deduce an anisotropic non-linear thin-walled beam model. The
obtained model is composed of a linear two-dimensional prob-
lem (describing the strain of the cross-section) and of a non-
linear one-dimensional problem characterizing the deformation
of the reference line. However, the obtained one-dimensional
model is different from the “classical” beam model because of
the existence of shear terms in the expression of the strain en-
ergy. The results obtained from this model are rather closed to
experiments made on prismatic composite thin-walled beams.
Finally, let us notice the work of Harursampath and Hodges
[37] based on asymptotic expansions but limited to the case of
anisotropic tubes.

We propose in this paper to use the constructive approach
based on asymptotic expansions, already developed by the
authors for plates [38,39] and shells [40,41], to deduce a
non-linear model for thin-walled rods from three-dimensional
equations. The present work constitutes a generalization of
[31,42] in non-linear elasticity. The approach used is based
on a decomposition of the three-dimensional equations on
Frenet basis of the initial profile. A dimensional analysis
then lets appear pertinent dimensionless numbers charac-
terizing the geometry and the level of applied loads. These
numbers are measurable and enable to define the domain
of validity of the obtained model. Moreover with this ap-
proach, the unknowns of the problem (the stresses and the
displacements) are directly deduced by asymptotic expansion
from the level of applied forces, without any a priori as-
sumptions. This constitutes the constructive character of our
approach.

We limit here our analysis to thin-walled rods with strongly
curved profile subjected to moderate force levels. In Lemmas
1 and 2, we begin with deducing the order of magnitude of the
displacements from the level of applied forces. Then at Result
1, we prove that the displacement field at the leading order
has a structure which generalizes Vlassov kinematics in the
non-linear case, in particular for moderate and large rotations.
At Result 2, the stress field is computed at the leading order
of the expansion. Finally, the associated extension, twist and
bending equations are deduced at Results 3–5. The equilibrium
equations obtained constitute a non-linear system of strongly
coupled differential equations, which does not seem to have
any equivalent in the literature.

2. The three-dimensional problem

We assume once and for all that an origin O and an or-
thonormal basis (e1, e2, e3) have been chosen in R3. We index
by a star (∗) all dimensional variables and the variables with-
out a star will denote dimensionless variables. On the other
hand, within the framework of large displacements, the ref-
erence and the current configurations cannot be confused. So
that the reference configuration variables will be indexed by
(0). Let �∗

0 be an open cylindrical surface of R3, (Oe3) its
axis, whose length is L0 and diameter d0. We note �∗

0g and �∗
0d

its lateral boundary, �∗
01 = �∗

0 × {0} and �∗
02 = �∗

0 × {L0} its
extremities.

Let us consider now a thin-walled rod with open cross-section
and 2h0 thickness, whose middle surface is �∗

0. The thin-walled

rod occupies the set �
∗
0 =�∗

0 ×[−h0, h0] of R3 in its reference
configuration. We call �∗

01 =�∗
01×]−h0, h0[ and �∗

02 =�∗
02×]−

h0, h0[ the extreme faces, �∗
0g = �∗

0g×] − h0, h0[ and �∗
0d =

�∗
0d×] − h0, h0[ the lateral faces, �∗

0± = �∗
0 × {±h0} the upper

and lower faces.
Let M∗

0 be a generic point of the beam. We decompose the

vector
−−−→
OM∗

0 as follows:

−−−→
OM∗

0 = x∗
3e3 + −−−→

G∗
0C

∗
0 + −−−→

C∗
0m∗

0 + r∗n, (1)

where x∗
3 is the coordinate of the current cross-section con-

taining M∗
0 on the axis (0x∗

3 ), G∗
0 the point of intersection

between the axis (0x∗
3 ) and the current cross-section, C∗

0
an arbitrary chosen point in the plane of the cross-section
(see Fig. 1) located by its cartesian coordinates (xc∗

1 , xc∗
2 ), and

r∗ the thickness variable. We call C∗
0 the intersection curve

between �∗
0 and the cross-section. The orthogonal projection

m∗
0 of M∗

0 on the middle surface is located by its cartesian
coordinates x∗ = (x∗

1 , x∗
2 ) or by its curvilinear abscisse s∗

along C∗
0. The origin s∗

0 of the curvilinear abscisse is an ar-
bitrary chosen point of C∗

0. We note n the unit normal and t
the unit tangent vector of C∗

0. Moreover, we call l∗ and q∗ the

coordinates of the vector
−−−→
C∗

0m∗
0 in the basis (t, n). Finally, we

call �∗ the angle (e1, t) and c∗
0 the curvature of the curve C∗

0
(see Fig. 1).

In what follows, we consider only thin-walled rods such as
d0/L0>1, h0/d0>1 and h0‖c∗

0‖∞>1. We assume that the rod
is subjected to the applied body forces f ∗=f ∗

t t +f ∗
n n+f ∗

3 e3 :
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Fig. 1. Geometry of the rod.

�̄
∗
0 → R3 and to the applied surface forces g∗± = g∗±

t t +
g∗±

n n + g∗±
3 e3: �̄

∗
0± → R3. Moreover, the rod is assumed to

be clamped on its extremities �∗
01 and �∗

02, and free on its
lateral faces �∗

0g and �∗
0d . The unknown of the problem is

then the displacement U∗ : �̄
∗
0 → R3. Within the frame-

work of non-linear elasticity, the displacement U∗ and the sec-
ond Piola–Kirchoff tensor �∗ satisfy the non-linear equilibrium
equations:

⎧⎪⎨
⎪⎩

Div∗(�∗F ∗
) = −f ∗ in �∗

0,

(F ∗�∗)ñ = g∗± on �∗
0±,

(F ∗�∗)t̃ = 0 on �∗
0g ∪ �∗

0d ,

U∗ = 0 on �∗
01 ∪ �∗

02,

(2)

where the overbar denotes the transposition operator, F ∗ =
��∗/�M∗

0 = I + �U∗/�M∗
0 the linear tangent map to the

mapping function M∗
0 → �∗(M∗

0 ) = M∗
0 + U∗, and ñ (re-

spectively t̃) the external unit normal to the upper and lower
faces (respectively to the lateral faces). Limiting our study
to Hookean materials, the constitutive relation is given by
�∗ = 	 Tr E∗I + 2
E∗ where E∗ = 1

2 (F
∗
F ∗ − I ) denotes the

Green–Lagrange tensor and I the R3 identity tensor. As in lin-
ear elasticity [42], the boundary conditions on �∗

0g ∪ �∗
0d are

considered on average upon the thickness, in order the twist to
be of the same order as the bending in the asymptotic model of
Proposition 1.

Finally let us add the mass conservation law to these equi-
librium equations. It writes

�∗ det F ∗ = �∗
0, (3)

where �∗
0 and �∗ denote the density of the material in the ini-

tial and deformed configuration, respectively. We only assume
that the density �∗ of the material does not become infinity or
equivalently that

det F ∗ = det

(
��∗

�M∗
0

)
�a > 0 in �∗

0, (4)

where a is a positive constant. This condition will be used later.

3. Dimensional analysis of equilibrium equations

3.1. Decomposition of equations

Let us decompose the three-dimensional equations in Frenet
basis (t, n, e3) of the initial configuration. To do this, let us
decompose the mapping �∗ as follows:

�∗ = �∗
t t + �∗

nn + �∗
3e3. (5)

Then F ∗ can be written in the basis (t, n, e3) as follows:

F ∗ = ��∗

�M∗
0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k∗
0

(
��∗

t

�s∗ − c∗
0�∗

n

)
��∗

t

�r∗
��∗

t

�x∗
3

k∗
0

(
��∗

n

�s∗ + c∗
0�∗

t

)
��∗

n

�r∗
��∗

n

�x∗
3

k∗
0
��∗

3

�s∗
��∗

3

�r∗
��∗

3

�x∗
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where we set

k∗
0 = 1

1 − r∗c0∗ . (7)

It is also possible to write F ∗ on the more compact form

F ∗ =
[
k∗

0
��∗

�s∗
��∗

�r∗
��∗

�x∗
3

]
. (8)

Let us notice that the thin-walled rod assumption (h0‖c0‖∞� 1)
ensures the existence of k∗

0 .
Then using decomposition (8) of F ∗, the Green–Lagrange

strain tensor writes E∗:

2E∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k∗2
0 ‖��∗

�s∗ ‖2−1 k∗
0
��∗

�r∗
��∗

�s∗ k∗
0
��∗

�x∗
3

��∗

�s∗

k∗
0
��∗

�s∗
��∗

�r∗

∥∥∥∥��∗

�r∗

∥∥∥∥
2

−1
��∗

�x∗
3

��∗

�r∗

k∗
0
��∗

�s∗
��∗

�x∗
3

��∗

�r∗
��∗

�x∗
3

‖��∗

�x∗
3

‖2−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)
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In the same way, the Piola–Kirchoff stress tensor �∗ can be
decomposed in the (t, n, e3) basis as follows:

�∗ =
⎡
⎢⎣

�∗
t t �∗

tn �∗
t3

�∗
tn �∗

nn �∗
n3

�∗
t3 �∗

n3 �∗
33

⎤
⎥⎦ (10)

with

�∗
t t = 	 + 2


2
k∗2

0

∥∥∥∥��∗

�s∗

∥∥∥∥
2

+ 	

2

∥∥∥∥��∗

�r∗

∥∥∥∥
2

+ 	

2

∥∥∥∥��∗

�x∗
3

∥∥∥∥
2

− 3	 + 2


2
�∗

tn = 
k∗
0
��∗

�r∗
��∗

�s∗ ,

�∗
nn = 	

2
k∗2

0

∥∥∥∥��∗

�s∗

∥∥∥∥
2

+ 	 + 2


2

∥∥∥∥��∗

�r∗

∥∥∥∥
2

+ 	

2

∥∥∥∥��∗

�x∗
3

∥∥∥∥
2

− 3	 + 2


2
�∗

t3 = 
k∗
0
��∗

�x∗
3

��∗

�s∗ ,

�∗
33 = 	

2
k∗2

0 ‖��∗

�s∗ ‖2 + 	

2
‖��∗

�r∗ ‖2 + 	 + 2


2
‖��∗

�x∗
3

‖2

− 3	 + 2


2
�∗

n3 = 

��∗

�x∗
3

��∗

�r∗ .

To simplify the notations in what follows, we will write F ∗ in
the following form:

F ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k∗
0
��∗

�s∗ · t
��∗

�r∗ · t
��∗

�x∗
3

· t

k∗
0
��∗

�s∗ · n
��∗

�r∗ · n
��∗

�x∗
3

· n

k∗
0
��∗

�s∗ · e3
��∗

�r∗ · e3
��∗

�x∗
3

· e3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Then setting 
∗ = �∗F ∗, we have


∗ = �∗F ∗ =
⎡
⎢⎣


∗
t t 
∗

tn 
∗
t3


∗
nt 
∗

nn 
∗
n3


∗
3t 
∗

3n 
∗
33

⎤
⎥⎦ =

⎡
⎢⎣


∗
t


∗
n


∗
3

⎤
⎥⎦ , (12)

where the components of the tensor 
∗ are given by


∗
t t = 
∗

t t 
∗
tn = 
∗

t n 
∗
t3 = 
∗

t e3,


∗
nt = 
∗

nt 
∗
nn = 
∗

nn 
∗
n3 = 
∗

ne3,


∗
3t = 
∗

3t 
∗
3n = 
∗

3n 
∗
33 = 
∗

3e3.

We recall that the overbar denotes the transposition operator.
Thus if u and v are two vectors of R3, we have uv = u.v

where the dot denotes the scalar product of R3. Equivalently,
the vectors 
∗

t , 
∗
n and 
∗

3 can be written with respect to the

mapping �∗. We have


∗
t = k∗

0

{
	 + 2


2
k∗2

0

∥∥∥∥��∗

�s∗

∥∥∥∥
2

+ 	

2

∥∥∥∥��∗

�r∗

∥∥∥∥
2

+	

2

∥∥∥∥��∗

�x3

∥∥∥∥
2

− 3	 + 2


2

}
��∗

�s

+ 
k∗
0
��∗

�r∗
��∗

�s∗
��∗

�r
+ 
k∗

0
��∗

�x∗
3

��∗

�s∗
��∗

�x3
, (13)


∗
n = 
k∗2

0
��∗

�r∗
��∗

�s∗
��∗

�s
+

{
	

2
k∗2

0

∥∥∥∥��∗

�s∗

∥∥∥∥
2

+ 	 + 2


2

∥∥∥∥��∗

�r∗

∥∥∥∥
2

+ 	

2

∥∥∥∥��∗

�x∗
3

∥∥∥∥
2

−3	 + 2


2

}
��∗

�r
+ 


��∗

�x∗
3

��∗

�r∗
��∗

�x3
, (14)


∗
3 = 
k∗2

0
��∗

�x∗
3

��∗

�s∗
��∗

�s
+ 


��∗

�r∗
��∗

�x∗
3

��∗

�r

+
{

	

2
k∗2

0

∥∥∥∥��∗

�s∗

∥∥∥∥
2

+ 	

2

∥∥∥∥��∗

�r∗

∥∥∥∥
2

+	 + 2


2

∥∥∥∥��∗

�x∗
3

∥∥∥∥
2

− 3	 + 2


2

}
��∗

�x3
. (15)

They can also be written with respect to the components of the
stresses �∗ as follows:


∗
t = k∗

0�∗
t t

��∗

�s∗ + �∗
tn

��∗

�r∗ + �∗
t3

��∗

�x∗
3

, (16)


∗
n = k∗

0�∗
nt

��∗

�s∗ + �∗
nn

��∗

�r∗ + �∗
n3

��∗

�x∗
3

, (17)


∗
3 = k∗

0�∗
3t

��∗

�s∗ + �∗
3n

��∗

�r∗ + �∗
33

��∗

�x∗
3

. (18)

Now the three-dimensional equilibrium equations can be de-
composed in Frenet basis (t, n, e3). To do this we use the de-
composition of the three-dimensional divergence. We obtain in
�∗

0:

�
∗
nt

�r∗ + k∗
0

(
�
∗

t t

�s∗ − c∗
0
∗

tn − c∗
0
∗

nt

)
+ �
∗

3t

�x∗
3

= −f ∗
t , (19)

�
∗
nn

�r∗ + k∗
0

(
�
∗

tn

�s∗ + c∗
0
∗

t t − c∗
0
∗

nn

)
+ �
∗

3n

�x∗
3

= −f ∗
n , (20)

�
∗
n3

�r∗ + k∗
0

(
�
∗

t3

�s∗ − c∗
0
∗

n3

)
+ �
∗

33

�x∗
3

= −f ∗
3 (21)

or equivalently

�
∗
n

�r∗ + k∗
0

(
�
∗

t

�s∗ − c∗
0
∗

n

)
+ �
∗

3

�x∗
3

= −f ∗ (22)
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with the associated boundary conditions


∗
n = g∗± for r∗ = ±h∗

0 (23)


∗
t = 0 for s∗ = s∗− and s∗ = s∗+ (24)

U∗ = 0 for x∗
3 = 0 and x∗

3 = L0. (25)

3.2. Dimensional analysis of equations

Let us define the following dimensionless physical data and
dimensionless unknowns of the problem:

ut = u∗
t

utr

un = u∗
n

unr

u3 = u∗
3

u3r

x3 = x∗
3

L0
x = x∗

d0
,

s = s∗

d0
r = r∗

h0
c0 = c∗

0

cr

ft = f ∗
t

ftr

fn = f ∗
n

fnr

,

f3 = f ∗
3

f3r

gt = g∗
t

gtr

gn = g∗
n

gnr

g3 = g∗
3

g3r

� = �∗

�∗
0

,

where the variables indexed by (r ) are the reference ones. The
new variables which appear (without a star) are dimensionless.
To avoid any assumption on the order of magnitude of the
displacement components, the reference scales utr , unr and u3r

are firstly assumed to be equal to L0. This a priori allows large
displacements.

In a natural way we introduce cr =‖c∗
0‖∞ which denotes the

maximum of curvature (the smaller radius of curvature) of the
middle surface �∗

0. As in shell theory, the order of magnitude of
the curvature is a fundamental data in the asymptotic expansion
of equations. Therefore, we will have to distinguish the rods
with shallow cross profile from the rods with strongly curved
profile.

First the dimensional analysis of k∗
0 leads to

k0 = 1

1 − h0crrc0
.

If we set � = hcr , the thin-walled rod assumption ensures that
�>1 and so that k0 admits the following expansion:

k0 = 1 + �rc0 + (�rc0)
2 + · · · . (26)

In a natural way, we have

�∗ = L0�

whose components can be written as

��∗

�r∗ = �−1�−1 ��

�r

��∗

�s∗ = �−1 ��

�s

��∗

�x∗
3

= ��

�x3
,

where we set

� = d0

L0
and � = h0

d0
.

Using (13), (14) and (15), the dimensional analysis of 
∗
t , 
∗

n

and 
∗
3 leads to


t = �−1k0

{
�−2 � + 2

2
k2

0

∥∥∥∥��

�s

∥∥∥∥
2

+ �−2�−2 �

2

∥∥∥∥��

�r

∥∥∥∥
2

+�

2

∥∥∥∥ ��

�x3

∥∥∥∥
2

− 3� + 2

2

}
��

�s

+ �−3�−2k0
��

�r

��

�s

��

�r
+ �−1k0

��

�x3

��

�s

��

�x3
, (27)


n = �−1�−1

{
�−2k2

0
�

2

∥∥∥∥��

�s

∥∥∥∥
2

+ �−2�−2 � + 2

2

×
∥∥∥∥��

�r

∥∥∥∥
2

+ �

2

∥∥∥∥ ��

�x3

∥∥∥∥
2

− 3� + 2

2

}
��

�r

+ k2
0�−3�−1 ��

�r

��

�s

��

�s
+ �−1�−1 ��

�x3

��

�r

��

�x3
, (28)


3 =
{

�−2 �

2
k2

0

∥∥∥∥��

�s

∥∥∥∥
2

+ �−2�−2 �

2

∥∥∥∥��

�r

∥∥∥∥
2

+� + 2

2

∥∥∥∥ ��

�x3

∥∥∥∥
2

− 3� + 2

2

}
��

�x3

+ k2
0�−2 ��

�x3

��

�s

��

�s
+ �−2�−2 ��

�r

��

�x3

��

�r
, (29)

where we set � = 	/
 and 
 = 
∗/
. Equivalently, using (16),
(17) and (18), we get


t = �−1k0�t t

��

�s
+ �−2�tn

��

�r
+ �t3

��

�x3
, (30)


n = �−1k0�nt

��

�s
+ �−2�nn

��

�r
+ �n3

��

�x3
, (31)


3 = �−1k0�3t

��

�s
+ �−2�3n

��

�r
+ �33

��

�x3
. (32)

Finally the non-dimensional three-dimensional equilibrium
equations can be written on the compact form

�
n

�r
+ k0

(
�
�
t

�s
− �c0
n

)
+ ��

�
3

�x3
= −Ff (33)

with the associated boundary conditions


n = Gg± for r = ±1, (34)


t = 0 for s = s− and s = s+, (35)


3 = 0 for x3 = 0 and x3 = 1. (36)

The mass conservation law (4) becomes

� det(F ) = � det

(
��

�M0

)
��3a > 0 ∀� > 0. (37)
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Therefore the dimensional analysis of equilibrium equations
naturally lets appear non-dimensional numbers

� = d0

L0
� = h0

d0
� = h0cr F = h0fr



G = gr



.

(1) The shape ratio � characterizes the inverse of the shooting-
pain of the rod. This is a known parameter of the problem
which satisfies �>1.

(2) The dimensional number � denotes the ratio between the
thickness h0 of the rod to the length of its profile. This
number is also a data of the problem which satisfies �>1.

(3) The shape ratio �=h0cr is the ratio between the thickness
to the smaller radius of curvature of the middle surface �0
of the rod. It is a given geometrical data of the problem
which verifies �>1.

(4) The force ratios F and G represent, respectively, the ratio
of the resultant on the thickness of the body forces (re-
spectively of the surface forces) to 
 considered as a refer-
ence stress. These numbers only depend on known physi-
cal quantities and must be considered as given data of the
problem.

3.3. One-scale assumption

To reduce the problem to a one-scale problem, � is chosen as
the small reference parameter of the problem.4 Then the other
dimensional numbers are linked to �, or more precisely to the
powers of �.

• Order of magnitude of the curvature
In a natural way, as in shell theory, we have to distinguish
thin-walled rods:
◦ with strongly curved profile where � = �
◦ with shallow profile where � = �2.

This distinction is fundamental because these two fami-
lies of thin-walled rods do not have the same asymptotic
behavior.

• Order of magnitude of the thickness
Three cases can be distinguished and studied:
◦ the thick rods where � = 1. This is not the subject of

this paper.
◦ the thin-walled rods where � = �. It is the case studied

here.
◦ the very thin-walled rods where �=�p, p > 1. This case

is not studied in this paper.

• Order of magnitude of the applied loads
The applied loads are an essential given data of the prob-
lem. In the framework of a one-scale asymptotic expansion,
the force ratios must be linked also to �. This is equivalent
to fix the order of magnitude of the applied forces which
are given data.

4 If not we have multi-scale problems which are much more complicated.
It is not the subject of this paper.

In the case of thin-walled rods with strongly curved profile,
we will consider moderate levels of applied forces such as
Ft = Fn = �5, Gt = Gn = �5 and F3 = G3 = �4.

4. Asymptotic expansion of equations

Let us consider a thin-walled rod with strongly curved profile
(� = �) subjected to force levels such as Ft = Fn = �5, Gt =
Gn = �5 and F3 = G3 = �4. The problem is then reduced to a
one scale one which writes in �0:

�
n

�r
+ �k0

(
�
t

�s
− c0
n

)
+ �2 �
3

�x3
= −Ff

with the boundary conditions


n = Gg± for r = ±1,


t = 0 for s = s− and s = s+,

U = 0 for x3 = 0 and 1,

where F and G are two diagonal matrix defined as follows:

F =
[
Ft 0 0
0 Fn 0
0 0 F3

]
, G =

[
Gt 0 0
0 Gn 0
0 0 G3

]
.

We recall that we have to relax the boundary condition on the
free lateral surface for s = s− and s = s+ to avoid boundary
layers. Thus we have in particular

∫ 1

−1

t3 dr = 0 for s = s±.

The standard asymptotic technique then proceeds as follows.
First we postulate that the solution U = (ut , un, u3) of the
problem admits a formal expansion with respect to the powers
of �:

U = U0 + �1U1 + �2U2 + · · · .

The expansion of U with respect to � implies an expansion of
the components of the mapping �, of the strain tensor E, and
of the stresses � and 
 = �F̄ with respect to �:

� = �0 + ��1 + �2�2 + · · · ,

E = E0 + �E1 + �2E2 + · · · ,

� = �0 + ��1 + �2�2 + · · · ,


 = 
0 + �
1 + �2
2 + · · · .

Then we replace � by its expansion in equilibrium equations
and we equate to zero the factor of the successive powers of
�. This way we obtain a succession of coupled problems P−6,
P−5, P−4, . . . whose resolution leads to the search asymp-
totic one-dimensional model corresponding to the force level
considered.
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It is important to notice that with the approach developed
here, the order of magnitude of the displacements (which are
unknowns of the problem) are directly deduced from the level
of applied forces. In particular, for the force levels considered
here, the axial displacement is one order smaller than the other
ones. This is the result of Lemmas 1 and 2:

Lemma 1. For applied force levels such as Ft = Fn = �5,
Gt = Gn = �5 and F3 = G3 = �4, the leading term U0 of the
expansion of U is equal to zero:

U0 = 0.

Proof. The proof of this lemma is split into five steps.
(i) �0 does not depend on r
The cancellation of the factor of �−6 leads to problem P−6

which writes

�
−6
n

�r
= 0 in �0,


−6
n = 0 for r = ±1,


−6
t = 0 for s = s− and s = s+.

Thus in �0 we have


−6
n = 0.

Then replacing 
−6
n with its expression, we get

� + 2

2

∥∥∥∥∥��0

�r

∥∥∥∥∥
2
��0

�r
= 0.

So we have

��0

�r
= 0

which implies that


−5
t = 
−4

t = 0 
−6
n = 
−5

n = 
−4
n = 0


−4
3 = 
−3

3 = 0.

Then problems P−5 and P−4 are trivially satisfied.

(ii) �1 does not depend on r
The cancellation of the factor of �−3 leads to problem P−3

which reduces to

�
−3
n

�r
= 0 in �0,


−3
n = 0 for r = ±1,


−3
t = 0 for s = s− and s = s+ (38)

and leads, in �0, to


−3
n = 0.

Then replacing 
−3
n with its expression, we get

(
��1

�r

��0

�s

)
��0

�s
+

⎛
⎝�

2

∥∥∥∥∥��0

�s

∥∥∥∥∥
2

+ � + 2

2

∥∥∥∥∥��1

�r

∥∥∥∥∥
2
⎞
⎠

��1

�r
= 0. (39)

Two cases are possible:

• either ��0/�s = 0, then Eq. (39) reduces to

� + 2

2

∥∥∥∥∥��1

�r

∥∥∥∥∥
2
��1

�r
= 0

and we have ��1/�r = 0
• else ��0/�s 	= 0, then there exists � ∈ R such as ��1/�r=

�(��0/�s). According to (39), we deduce that � satisfies

�(1 + �2) = 0.

Then we have � = 0, which implies that ��1/�r = 0.

Finally (27) leads to


−3
t = � + 2

2

∥∥∥∥∥��0

�s

∥∥∥∥∥
2
��0

�s
. (40)

(iii) �0 only depends on x3
The cancellation of the factor of �−2 leads to problem P−2

which reduces to

�
−2
n

�r
+ �
−3

t

�s
= 0 in �0, (41)


−2
n = 0 for r = ±1, (42)


−2
t = 0 for s = s− and s = s+. (43)

Let us integrate Eq. (41) upon the thickness. Using the boundary
condition (42), we get∫ 1

−1

�
−3
t

�s
dr = 0.

As 
−3
t does not depend on r, according to (38), we deduce that


−3
t = 0

which leads to ��0/�s = 0. Thus �0 only depends on x3.
According to the previous results, we have


−3
t = 
−2

t = 
−1
t = 0, 
−2

n = 
−1
n = 0,


−3
3 = 
−2

3 = 
−1
3 = 0

and problems P−2 and P−1 are trivially satisfied.
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(iv) (��1/�s, ��2/�r, d�0/dx3) constitute a basis of R3

The cancellation of the factor of �0 leads to problem P0
which reduces to

�
0
n

�r
= 0 in �0, (44)


0
n = 0 for r = ±1, (45)


0
t = 0 for s = s− and s = s+. (46)

Eq. (44) and boundary conditions (45) leads to


0
n = 0

or equivalently in terms of mapping(
��2

�r

��1

�s

)
��1

�s
+

⎛
⎝�

2

∥∥∥∥∥��1

�s

∥∥∥∥∥
2

+ � + 2

2

∥∥∥∥∥��2

�r

∥∥∥∥∥
2

+�

2

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

− 3� + 2

2

⎞
⎠ ��2

�r
+

(
d�0

dx3

��2

�r

)
d�0

dx3
= 0.

(47)

To conclude we must use the mass conservation law. According
to the previous results, the expansion of Eq. (37) writes

��1

�s
.

(
��2

�r
∧ ��0

�x3

)
�a > 0,

where ∧ denotes the wedge product of R3. This condition im-

plies that the vectors
(
��1/�s, ��2/�r, d�0/dx3

)
are linearly

independent and constitute a basis of R3.
Therefore the projection of Eq. (47) on this basis leads to the

following equations:

��2

�r

��1

�s
= 0, (48)

�

2

∥∥∥∥∥��1

�s

∥∥∥∥∥
2

+ �+2

2

∥∥∥∥∥��2

�r

∥∥∥∥∥
2

+�

2

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

−3�+2

2
= 0, (49)

d�0

dx3

��2

�r
= 0 (50)

which enable to write the vectors 
0
t and 
0

3 on the following
form:


0
t =

⎧⎨
⎩2

� + 1

� + 2

∥∥∥∥∥��1

�s

∥∥∥∥∥
2

+ �

� + 2

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

− (3� + 2)

(� + 2)

⎫⎬
⎭ ��1

�s
+ d�0

dx3

��1

�s

d�0

dx3
, (51)


0
3 =

⎧⎨
⎩ �

� + 2

∥∥∥∥∥��1

�s

∥∥∥∥∥
2

+ 2
� + 1

� + 2

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

− (3� + 2)

(� + 2)

⎫⎬
⎭ d�0

dx3
+ d�0

dx3

��1

�s

��1

�s
. (52)

The cancellation of the factor of �1 leads to problem P1 which
writes

�
1
n

�r
+ �
0

t

�s
= 0 in �0, (53)


1
n = 0 for r = ±1, (54)


1
t = 0 for s = s− and s = s+. (55)

Let us now integrate Eq. (53) upon the thickness. We have∫ 1

−1

�
0
t

�s
dr = 0.

As 
0
t does not depend on r according to (51), using the bound-

ary conditions (46), we get


0
t = 0. (56)

Then replacing 
0
t with its expression (51), as (��1/�s,

��2/�r, ��0/�x3) constitutes a basis of R3, we obtain

2
� + 1

� + 2

∥∥∥∥∥��1

�s

∥∥∥∥∥
2

+ �

� + 2

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

− (3� + 2)

(� + 2)
= 0,

(57)

d�0

dx3

��1

�s
= 0. (58)

Eqs. (48), (50) and (58) implies that the vectors ��1/�s, ��2/�r

and d�0/dx3 constitute an orthogonal basis of R3.
Then using (57), expression (52) of 
0

3 reduces to


0
3 = 3� + 2

2(� + 1)

⎧⎨
⎩

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

− 1

⎫⎬
⎭ d�0

dx3
. (59)

(v) Let us prove that U0 = 0
As 
0

t = 0 according to (56) Eq. (53) reduces to

�
1
n

�r
= 0.

Using (54), we have in �0:


1
n = 0. (60)

According to the previous results, problem P2 reduces to

�
2
n

�r
+ �
1

t

�s
+ �
0

3

�x3
= 0 in �0, (61)


2
n = 0 for r = ±1, (62)


2
t = 0 for s = s− and s = s+. (63)

Let us integrate Eq. (61) with respect to r and s. Using (62)
and (55), we obtain∫ s+

s−

∫ 1

−1

d
0
3

dx3
dr ds = 0.
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Replacing 
0
3 with its expression (59), we get

ES




d

dx3

[
�0

d�0

dx3

]
= 0, (64)

where

�0 =
∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

− 1

denotes the strain or the elongation of the middle line of the rod.
To conclude we will write our problem on the form of a prob-
lem of minimization. Let us define the space V of “smooth”
functions of R whose values are some vectors of R3. We then
define the following space of mapping functions:

V0 = {� ∈ V such as �(0) = �(1) = 0}.

Then the weak formulation equivalent to Eq. (64) writes:
Find �0 ∈ V0 which satisfies to

ES




∫ 1

−1
�0

d�

dx3

dv

dx3
dx3 = 0, ∀v ∈ V0. (65)

It is easy to prove that the minimization problem associated
to formulation (65) writes:

Find the mappings � which minimizes on V the functional:

J (�) = ES

4


∫ 1

−1
�2

0 dx3.

It is trivial that the solution of this minimization problem sat-
isfies to �0 = 0. This means that the length of the middle line
of the rod does not vary with the mapping �0. As the rod is
assumed to be clamped at its extremities, we get

U0 = 0.

This result proves that for the force level chosen, the ref-
erence scale for the displacements is not properly chosen. We
must have Ur = d0 in order the leading term of the expansion
U0 to be different from zero. However, we will not make a new
dimensional analysis of equations with Ur = d0, but we will
keep on the asymptotic expansion of equations. And this, not
to lose the reader.

On the other hand, before going on, let us define new param-
eters which enables to simplify the calculations and to interpret
the results obtained. According to the previous results, we have

d�0

dx3
= e3

and (49) and (57) lead to

∥∥∥∥∥d�0

dx3

∥∥∥∥∥
2

=
∥∥∥∥∥��1

�s

∥∥∥∥∥
2

=
∥∥∥∥∥��2

�r

∥∥∥∥∥
2

= 1. (66)

This means that the vectors
(
��1/�s, ��2/�r, d�0/dx3

)
con-

stitute an orthonormal basis of R3, and more precisely a basis
of the deformed configuration at the leading order. Indeed the
first non-zero term of the tangent mapping F writes

F 0 =
[

��1

�s

��2

�r

d�0

dx3

]
.

Thus the basis (��1/�s, ��2/�r , d�0/dx3) can be identified
with Frenet basis of the deformed configuration at order zero.
In this case, it is more convenient to set

��1

�s
= T

��2

�r
= N

d�0

dx3
= e3,

where T and N represent the tangent and normal vector to the
curve C at the point m=�1(m0) in the deformed configuration.
In what follows (T , N, e3) will denote the local basis in the
deformed configuration.

On the other hand, as N does not depend on r, we set

�2 = U2(s, x3) + rN . (67)

In the same way, we have

�1 = u1
3(x3)e3 + X(s, x3), (68)

where X denotes the position vector at current point m=�1(m0)

in the plane of a section. It satisfies to

X.e3 = 0,

�X

�s
= T .

Moreover, we have

�T

�s
= cN ,

�N

�s
= −cT ,

where c denotes the curvature of the profile C in the deformed
configuration.5 �

Lemma 2. For levels of applied forces such as Ft =Fn = �5,
Gt = Gn = �5 and F3 = G3 = �4, the term of order 1 of the
expansion of the axial displacement is equal to zero:

u1
3 = 0.

Proof. First, condition (66) and expression (59) of 
0
3 lead to


0
3 = 0.

5 According to relations (66), we have ‖��1/�s‖=1. There is no variation
of the metric of the profile at the leading order. So it is possible to keep the
curvilinear abscisse s to parameter the profile C in the deformed configuration.
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On the other hand, according to (60) we have 
1
n = 0. Equiva-

lently in terms of mapping, using the fact that (T , N, e3) is a
basis of the deformed configuration, we get

��3

�r
T + ��2

�s
N = 0, (69)

�

[
rc0 + ��2

�s
T

]
+ (� + 2)

��3

�r
N + �

��1

�x3
e3 = 0, (70)

��1

�x3
N + ��3

�r
e3 = 0. (71)

Then we obtain the following expressions of the stress vectors:


1
t =

(
4
� + 1

� + 2

[
��2

�s
T + rc0

]
+ 2�

� + 2

��1

�x3
e3

)
T

+
(

��1

�x3
T + ��2

�s
e3

)
e3,


1
3 =

(
2�

� + 2

[
��2

�s
T + rc0

]
+ 4

� + 1

� + 2

��1

�x3
e3

)
e3

+
(

��1

�x3
T + ��2

�s
e3

)
T .

Now replacing �2 with its expression (67), we get


1
t =

(
4
� + 1

� + 2

�U2

�s
T + 2

�

� + 2

��1

�x3
e3

)
T +

(
��1

�x3
T

+�U2

�s
e3

)
e3 + 4

� + 1

� + 2
r(c0 − c)T , (72)


1
3 =

(
2

�

� + 2

�U2

�s
T + 4

� + 1

� + 2

��1

�x3
e3

)
e3 +

(
��1

�x3
T

+�U2

�s
e3

)
T + 2

�

� + 2
r(c0 − c)e3. (73)

The new problem P2
According to the previous results, problem P2 now reduces

to

�
2
n

�r
+ �
1

t

�s
= 0 in �0. (74)

Using boundary conditions (62), let us integrate Eq. (74) upon
the thickness. We obtain∫ 1

−1

�
1
t

�s
dr = 0

which reduces in �0 to∫ 1

−1

1
t dr = 0

according to the boundary conditions (55). Then replacing 
1
t

with its expression (72), we get

4
� + 1

� + 2

�U2

�s
T + 2

�

� + 2

��1

�x3
e3 = 0, (75)

��1

�x3
T + �U2

�s
e3 = 0. (76)

Using these new equalities, expressions (72) and (73) of 
1
t and


1
3 reduce to


1
t = 4

� + 1

� + 2
r(c0 − c)T , (77)


1
3 = 
1

33e3 =
(

E




du1
3

dx3
+ 2

�

� + 2
r(c0 − c)

)
e3. (78)

Finally, using the last expression of 
1
t , the boundary condition

(62), and Eq. (74), we obtain the following expression of 
2
n:


2
n = −4

� + 1

� + 2

r2 − 1

2

(
�(c0 − c)

�s
T + c(c − c0)N

)
. (79)

On the other hand, let us multiply Eq. (74) with r and integrate
it upon the thickness. 0∫ 1

−1

(
r
�
2

n

�r
+ r

�
1
t

�s

)
dr = 0.

Using (62), an integration by parts of the first term leads to∫ 1

−1

(
−
2

n + r
�
1

t

�s

)
dr = 0. (80)

This equality will be used later.

Problem P3
The cancellation of the factor of �3 leads to problem P3:

�
3
n

�r
+ �
2

t

�s
+ rc0

�
1
t

�s
− c0


2
n + �
1

3

�x3
= 0 in �0, (81)


3
n = 0 for r = ±1, (82)


3
t = 0 for s = s− and s = s+. (83)

Using (82) and (63), an integration of Eq. (81) with respect to
r and s leads to∫ s+

s−

∫ 1

−1

(
rc0

�
1
t

�s
− c0


2
n + �
1

3

�x3

)
dr ds = 0

which reduces to∫ s+

s−

∫ 1

−1

�
1
3

�x3
dr ds = 0

according to (80). Then replacing 
1
3 with its expression (78),

we get

ES




d2u1
3

dx2
3

= 0.
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According to the boundary conditions (the rod is assumed to
be clamped at its extremities), we obtain

u1
3 = 0

which concludes the proof of Lemma 2. Therefore, for the force
level considered, the reference scale for the axial displacement
is not properly chosen. We have to consider u3r = h0 in order
the leading term u0

3 of the expansion of U to be different from
zero. Once again, to simplify the notations and the following
calculations, we will not make a new dimensional analysis of
the equations. �

5. A non-linear model of thin-walled rod for strongly bent
profile

5.1. Non-linear displacement of Vlassov type

Result 1. For force levels such as Ft =Fn = �5, Gt =Gn = �5

et F3 = G3 = �4, the first non-zero term of the expansion of
the displacement is U = (U1, u2

3). The associated kinematics is
non-linear of Vlassov type and verify∣∣∣∣∣
U1 = V (x3) + (R� − I2)x,

u2
3 = u3(x3) − R�x

dV

dx3
− �n

d�

dx3
,

where V (x3) and u3(x3) denote the bending and the axial
displacement of the point G, respectively, � the angle of the
rotation around the (G, e3) axis whose matrix of rotation is

R� =
[

cos � − sin �
sin � cos �

]
, �n the sectorial surface given by

d�n/ds = −q and I2 the identity or R2.

Proof. In a first time, we prove that the sections of the rod
behave like rigid solids (the curvature and the metric do not
vary during the deformation). We then deduce the expression
of the displacement.

(i) The sections stay plane and dot not deform
We just proved that u1

3 = 0. According to (68) and (75), we
have

�Ū2

�s
T = 0. (84)

Let us integrate Eq. (81) upon the thickness. Using (82) and
(80), we obtain

∫ 1

−1

(
�
2

t

�s
+ �
1

3

�x3

)
dr = 0

whose projection onto (T , N) basis leads to

∫ 1

−1

(
�
2

tT

�s
− c
2

tN

)
dr = 0, (85)

∫ 1

−1

(
�
2

tN

�s
+ c
2

tT

)
dr = 0. (86)

Let us now derive Eq. (86) with respect to s. We get

∫ 1

−1

(
�2
2

tN

�s2 + �c

�s

2
tT + c

�
2
tT

�s

)
dr = 0

which becomes using (85) and (86)

∫ 1

−1

(
�2
2

tN

�s2 − 1

c

�c

�s

�
2
tN

�s
+ c2
2

tN

)
dr = 0. (87)

To obtain this equation, we assumed that the curvature of the
deformed configuration was different from zero: c 	= 0. This
assumption is satisfied because the curvature must stay of the
same order of magnitude along the axis of the rod.6 Indeed,
the rod being clamped at its extremities, we have at this points
c = c0 which is large (we consider here only thin-walled rods
with strongly curved profile). Thus with the one-scale approach
developed here, the curvature cannot get the value zero in the
case of thin-walled rods with strongly curved profile.

Let us now use the following relation:∫ 1

−1

2
tN dr =

∫ 1

−1

2
nT dr (88)

necessary for the calculations whose proof is detailed in Ap-
pendix A. Replacing 
2

tN with 
2
nT in Eq. (87), we get

∫ 1

−1

(
�2
2

nT

�s2 − 1

c

�c

�s

�
2
nT

�s
+ c2
2

nT

)
dr = 0.

Finally replacing 
2
nT with its expression (79), we obtain the

following second-order differential equation

�3(c0 − c)

�s3 − 1

c

�c

�s

�2(c0 − c)

�s2 + c2 �(c0 − c)

�s
= 0

whose general solution writes

�(c0 − c)

�s
= A(x3) cos(�) + B(x3) sin(�) (89)

with d�/ds = c.
The boundary condition (55) and expression (77) of 
1

t give
us

c0 − c = 0 for s = s− and s = s+.

In the same way, (63), (127) and (79) lead to

�(c0 − c)

�s
= 0 for s = s− and s = s+.

With the previous boundary conditions, the unique solution of
(89) writes

c = c0.

Thus we proved that the curvature does not vary during the
deformation. According to (66) the metric of the profile does not

6 If not we have multi-scale problems which are much more complicated
and not studied in this paper.
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vary neither at the first order. The displacement of the section
is a plane rigid solid displacement. This assumption made by
Vlassov in linear theory stays valid in non-linear theory, for the
level of displacements considered here.

Therefore the local basis (T , N, e3) of the deformed config-
uration can be deduced from the initial local basis (t, n, e3) by
a rotation around the e3 axis which does not depend on s.

Let us denote �(x3) the angle of this rotation whose two-
dimensional matrix writes in the (t, n) basis:

R� =
[

cos � − sin �
sin � cos �

]

then we have

��1

�s
= T = R�t

and as �1 = U1 + x, we deduce that

�U1

�s
= (R� − I2)t ,

where I2 denotes the identity matrix of the plane (t, n). So that
the displacement of the section in its plane writes

U1 = V (x3) + (R� − I2)x, (90)

where V (x3) denotes the displacement of the origin of the
frame. In the system of principal coordinates, the origin con-
sidered coincides with the center of gravity G of the section.

Let us notice that it is possible to introduce equally the shear
center C of the section. To do this, let us writes

U1 = W(x3) + (R� − I2)(x − xc),

where xc denotes the position of the point C in the plane of the
section. The displacement W(x3) then denotes the displacement
of the shear center C. In what follows, to simplify the notations,
we will use the expression (90) of U1.

(ii) Expression of the axial displacement
To determine the axial displacement u2

3, let us use (76) and
(67). We obtain

��1

�x3
T + ��2

�s
e3 = ��1

�x3
T + �u2

3

�s
= 0.

As T = d�1/ds, we deduce that

�u2
3

�s
= −��1

�x3

��1

�s

or equivalently

�u2
3

�s
= − �

�s

[
��1

�x3
�1

]
+ �T

�x3
�1.

As �T/�x3 = (d�/dx3)N , we obtain

�u2
3

�s
= − �

�s

[
��1

�x3
�1

]
+ Q

d�

dx3
,

where the vector ��1 (projection of �1 onto the (t, n) basis)
has been decomposed onto the local basis (T , N) as follows:
��1 = HT + QN . Then we deduce that

u2
3 = ū2

3 − ��1

�x3
�1 − �N

d�

dx3
,

where ��N/�s=−Q, and ū2
3 denotes the axial displacement of

the section. Let us notice that �N corresponds to the classical
sectorial area (see [2]) but calculated here in the deformed
configuration.

It is possible to express the displacement u2
3 in a more clas-

sical way. To do this, let us develop the previous expression.
Replacing �1 by its expression (90), we obtain

u2
3 = ū2

3 − [
V + R�x

] [
dV

dx3
+ d�

dx3
�R�x

]
− �N

d�

dx3
,

where � denotes the two-dimensional matrix of “the wedge
product with e3”, which writes in all basis orthogonal to e3 (in
particular in (t, n)):

� =
[

0 −1
1 0

]
.

Let us develop the previous expression of u2
3. As R�x�R�x=0,

we obtain

u2
3 = ū2

3 − V
dV

dx3
− R�x

dV

dx3
− d�

dx3
V �R�x − �N

d�

dx3

or equivalently

u2
3 = u3(x3) − xR�

dV

dx3
− �n

d�

dx3
,

where we set

u3(x3) = ū2
3 − V

dV

dx3
,

�n = V �R�x + �N .

Let us notice that �n denotes the sectorial area of the non-
deformed configuration. Indeed, we have

d�n

ds
= V �R�t − d�N

ds
.

As d�N/ds = −Q, Q = �1N and �t = n, we get

d�n

ds
= V R�n − �1N .

On the other hand, according to (90), we have �1 = V + R�x

and R�n = N . So that

d�n

ds
= −x̄n = −q

which corresponds to the classical definition of the sectorial
area in the non-deformed configuration [2]. �
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5.2. Computation of the stresses

Result 2. For external level forces such as Ft = Fn = �5,
Gt =Gn = �5 and F3 =G3 = �4, the first non-zero term of the
stresses � is �2 whose expression in (t, n, e3) basis writes

�2 =
[ 0 0 �2

t3
0 0 0

�2
t3 0 �2

33

]

with

�2
t3 = −2r

d�

dx3

�2
33 = E




�u2
3

�x3
+ E

2


∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

.

Proof. Let us first explain �3 and then the components 
2 and
�2 of the stresses at order two.

Expression of �3

As we proved that c=c0, we have according to (77) and (79):


1
t = 
2

n = 0.

On the other hand, from Eqs. (69), (70) and (71), using (84)
and the result of Lemma 2, we deduce that �3 satisfy the three
following relations:

��3

�r
T = −��2

�s
N = −�U2

�s
N ,

��3

�r
N = 0,

��3

�r
e3 = −��1

�x3
N .

Thus the components of �3 are given by

�3
T = Ũ3

T − r
�U2

�s
N , (91)

�3
N = Ũ3

N , (92)

�3
3 = Ũ3

3 − r
��1

�x3
N . (93)

On the other hand, as 
2
n = 0, we have the following relations:

��4

�r
T + ��3

�r

��2

�s
+ ��3

�s
N = 0,

��4

�r
e3 + ��3

�r

��1

�x3
+ ��2

�x3
N = 0,

�

2

⎡
⎣

∥∥∥∥∥��2

�s

∥∥∥∥∥
2

+ 2
��3

�s
T + 4rc0

��2

�s
T + 3(rc0)

2

⎤
⎦

+ � + 2

2

⎡
⎣

∥∥∥∥∥��3

�r

∥∥∥∥∥
2

+ 2
��4

�r
N

⎤
⎦

+ �

2

⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
��2

�x3
e3

⎤
⎦ = 0

which leads to


2
t =

⎛
⎝2

� + 1

� + 2

⎡
⎣

∥∥∥∥∥��2

�s

∥∥∥∥∥
2

+ 2
��3

�s
T + 4rc0

��2

�s
T

+ 3(rc0)
2

⎤
⎦ + �

� + 2

⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
��2

�x3
e3

⎤
⎦

⎞
⎠ T

+
(

��2

�x3
T + ��1

�x3

��2

�s
+ ��3

�s
e3

)
e3,


2
3 =

⎛
⎝ �

� + 2

⎡
⎣

∥∥∥∥∥��2

�s

∥∥∥∥∥
2

+ 2
��3

�s
T + 4rc0

��2

�s
T

+3(rc0)
2
]

+ 2
� + 1

� + 2

⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
��2

�x3
e3

⎤
⎦

⎞
⎠ e3

+
(

��2

�x3
T + ��1

�x3

��2

�s
+ ��3

�s
e3

)
T .

Then replacing �2 and �3 with their expressions (67) and
(91)–(93), respectively, we obtain


2
t = − 4r

� + 1

� + 2

�

�s

(
�U2

�s
N

)
T + 2

� + 1

� + 2

×
[∥∥∥∥�U2

�s

∥∥∥∥
2

+ 2
�Ũ3

T

�s
− 2c0Ũ

3
N

]
T

+ �

� + 2

⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
�U2

�x3
e3

⎤
⎦ T

+
(

�U2

�x3
T + ��1

�x3

�U2

�s
+ �Ũ3

�s
e3 − 2r

d�

dx3

)
e3, (94)


2
3 = − 2r

�

� + 2

�

�s

(
�U2

�s
N

)
e3 + �

� + 2

×
[∥∥∥∥�U2

�s

∥∥∥∥
2

+ 2
�Ũ3

T

�s
− 2c0Ũ

3
N

]
e3

+ 2
� + 1

� + 2

⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
�U2

�x3
e3

⎤
⎦ e3

+
(

�U2

�x3
T + ��1

�x3

�U2

�s
+ �Ũ3

�s
e3 − 2r

d�

dx3

)
T , (95)
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The new problem P3
According to the previous results, problem P3 reduces to

�
3
n

�r
+ �
2

t

�s
= 0 in �0. (96)

Using (82), an integration of Eq. (96) upon the thickness
leads to∫ 1

−1

�
2
t

�s
dr = 0

which reduces to∫ 1

−1

2
t dr = 0

according to (63). Replacing 
2
t with its expression (94), we

obtain

2
� + 1

� + 2

[∥∥∥∥�U2

�s

∥∥∥∥
2

+ 2
�Ũ3

T

�s
− 2c0Ũ

3
N

]

+ �

� + 2

⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
�U2

�x3
e3

⎤
⎦ = 0,

�U2

�x3
T + ��1

�x3

�U2

�s
− �Ũ3

�s
e3 = 0.

Thus the expressions of 
2
t and 
2

3 reduce to


2
t = −4r

� + 1

� + 2

�

�s

(
�U2

�s
N

)
T − 2r

d�

dx3
e3, (97)


2
3 = − 2r

�

� + 2

�

�s

(
�U2

�s
N

)
e3

+ E

2


⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
�U2

�x3
e3

⎤
⎦ e3 − 2r

d�

dx3
T . (98)

Finally, using (96) and (98), we deduce the following expression
of 
3

n:


3
n = 4

� + 1

� + 2

[
�2

�s2

(
�U2

�s
N

)
T + c0

�

�s

(
�U2

�s
N

)
N

]
r2 − 1

2
.

(99)

On the other hand, in the same way as for problem P2, let us
multiply Eq. (96) with r and integrate it upon the thickness. We
obtain∫ 1

−1

(
r
�
3

n

�r
+ r

�
2
t

�s

)
dr = 0.

Using (82), an integration by parts of the first term leads to∫ 1

−1

(
−
3

n + r
�
2

t

�s

)
dr = 0 (100)

which will be used later.

The problem P4
The cancellation of the factor of �4 leads to problem P4

which writes

�
4
n

�r
+ �
3

t

�s
+ rc0

�
2
t

�s
− c0


3
n + �
2

3

�x3
= −f3e3 in �0, (101)


4
n = g±

3 e3 for r = ±1, (102)


4
t = 0 for s = s− and s = s+. (103)

Let us now project Eq. (101) onto the plane of a section and
integrate it upon the thickness. Using (100) and (102), we get

∫ 1

−1
�

(
�
3

t

�s
+ �
2

3

�x3

)
dr = 0,

where we recall that � denotes the orthogonal projection onto
the plane of a section. Decomposing this equation in the basis
(T , N), we obtain the two following scalar equations:

∫ 1

−1

(
�
3

tT

�s
− c0


3
tN

)
dr = 0, (104)

∫ 1

−1

(
�
3

tN

�s
+ c0


3
tT

)
dr = 0. (105)

Let us derive Eq. (105) with respect to s. We have

∫ 1

−1

(
�2
3

tN

�s2 + �c0

�s

3
tT + c0

�
3
tT

�s

)
dr = 0

which can be written∫ 1

−1

(
�2
3

tN

�s2 − 1

c0

�c0

�s

�
3
tN

�s
+ c2

0

3
tN

)
dr = 0 (106)

using (104) and (105). To simplify this last equation, let us use
the following relation:∫ 1

−1

3
tN dr =

∫ 1

−1

3
nT dr . (107)

whose proof is detailed in Appendix A.
Using the previous relation, Eq. (106) becomes

∫ 1

−1

(
�2
3

nT

�s2 − 1

c0

�c0

�s

�
3
nT

�s
+ c2

0

3
nT

)
dr = 0.

Now replacing 
3
nT with its expression (99), we obtain

�4

�s4

(
�U2

�s
N

)
− 1

c0

�c0

�s

�3

�s3

(
�U2

�s
N

)
+c2

0
�2

�s2

(
�U2

�s
N

)
=0

whose general solution writes

�2

�s2

(
�U2

�s
N

)
= A(x3) cos(�) + B(x3) sin(�)
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with

d�

ds
= c0.

On the other hand, the boundary condition (63) and expression
(97) of 
2

t lead to


2
tT = 0 for s = s− and s = s+

or equivalently

�

�s

(
�U2

�s
N

)
= 0 for s = s− and s = s+.

In the same way, (83) implies that


3
tN = 0 for s = s− and s = s+

which leads, according to relation (2), to∫ 1

−1

3
nT dr = 0.

Then replacing 
3
nT with its expression (99), we get

�2

�s2

(
�U2

�s
N

)
= 0 for s = s− and s = s+

which leads to

�

�s

(
�U2

�s
N

)
= 0

according to the four boundary condition above. Thus we have

�U2

�s
N = �(x3). (108)

Finally, we have 
3
n = 0 and the stresses 
2

t and 
2
3 reduce to


2
t = �2

t3e3 = −2r
d�

dx3
e3, (109)


2
3 = �2

t3T + �2
33e3

= − 2r
d�

dx3
T + E

2


⎡
⎣

∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

+ 2
�U2

�x3
e3

⎤
⎦ e3 (110)

which leads to the expressions of Result 2. �

5.3. One-dimensional equilibrium equations

Result 3 (Traction equation). For a level of applied forces such
as Ft =Fn = �5, Gt =Gn = �5 and F3 =G3 = �4, the dimen-
sionless unknowns of the displacement field V (x3), u3(x3) and
�(x3) are solution of the following traction equation:

E




d

dx3

[
S

du3

dx3
− R�Sx

d2V

dx2
3

− S�n

d2�

dx2
3

+1

2

(
S

∥∥∥∥ dV

dx3

∥∥∥∥
2

+ Ix

(
d�

dx3

)2
)]

= −P3

with

P3 =
∫ s+

s−

∫ 1

−1
f3 dr ds +

∫ s+

s−
[g+

3 − g−
3 ] ds

and where

S =
∫ s+

s−

∫ 1

−1
dr ds, Sx =

∫ s+

s−

∫ 1

−1
x dr ds,

S�n =
∫ s+

s−

∫ 1

−1
� dr ds, Ix =

∫ s+

s−

∫ 1

−1
‖x‖2 dr ds.

Proof. The reduced problem P4
According to the previous results, problem P4 now reduces

to

�
4
n

�r
+ �
3

t

�s
+ �
2

3

�x3
= −f3e3 in �0. (111)

Let us integrate Eq. (111) upon a section. With the boundary
conditions (83) and (102), we obtain∫ s+

s−

∫ 1

−1

�
2
3

�x3
dr ds = −P3e3,

where we set P3 = ∫ s+
s−

∫ 1
−1 f3 dr ds + ∫ s+

s− [g+
3 − g−

3 ] ds. Then

replacing 
2
3 with its expression of Result 2, we obtain the

equilibrium equation of traction-compression:

E

2


�

�x3

[∫ s+

s−

∫ 1

−1

∥∥∥∥�U1

�x3

∥∥∥∥
2

+ 2
�u2

3

�x3
dr ds

]
= −P3.

As

�u2
3

�x3
= du3

dx3
− x

dR�

dx3

dV

dx3
− xR�

d2V

dx2
3

− �n

d2�

dx2
3

and

dR�

dx3
= �R�

d�

dx3

we get

�u2
3

�x3
= du3

dx3
− xR�

d2V

dx2
3

− x�R�
dV

dx3

d�

dx3
− �n

d2�

dx2
3

.

In the same way, we have

�U1

�x3
= dV

dx3
+ �R�x

d�

dx3
.

As∥∥∥∥�U1

�x3

∥∥∥∥
2

= �U1

�x3

�U1

�x3

we get

∥∥∥∥�U1

�x3

∥∥∥∥
2

=
∥∥∥∥ dV

dx3

∥∥∥∥
2

+ 2�R�x
dV

dx3

d�

dx3
+ ‖x‖2

(
d�

dx3

)2
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and the traction equilibrium equation reduces to

E




d

dx3

[
S

du3

dx3
− R�Sx

d2V

dx2
3

− S�n

d2�

dx2
3

+1

2

(
S

∥∥∥∥ dV

dx3

∥∥∥∥
2

+ Ix

(
d�

dx3

)2
)]

= −P3

with

S =
∫ s+

s−

∫ 1

−1
dr ds, Sx =

∫ s+

s−

∫ 1

−1
x dr ds,

S�n =
∫ s+

s−

∫ 1

−1
�n dr ds, Ix =

∫ s+

s−

∫ 1

−1
‖x‖2 dr ds.

which ends the proof of Result 3. �

Result 4 (Twist equation). For a level of applied forces such as
Ft =Fn=�5, Gt =Gn=�5 and F3=G3=�4, the dimensionless
unknowns of the displacement field V (x3), u3(x3) and �(x3)

are solution of the following twist equation:

d

dx3

[∫ s+

s−

∫ 1

−1
−r(1 − c0Q)�2

t3 + �N

��2
33

�x3

+�2
33��1 ��1

�x3
dr ds

]
= −Mt − dMt

3

dx3
,

where

Mt
3 =

∫ s+

s−

∫ 1

−1
�Nf3 dr ds +

∫ s+

s−
�N [g+

3 − g−
3 ] ds,

Mt = −
∫ s+

s−
��1

(∫ 1

−1
f dr + [g+ − g−]

)
ds.

We recall that

�2
t3 = −2r

d�

dx3
,

�2
33 = E




�u2
3

�x3
+ E

2


∥∥∥∥∥��1

�x3

∥∥∥∥∥
2

,

�1 = U1 + x

with∣∣∣∣∣
U1 = V (x3) + (R� − I2)x

u2
3 = u3(x3) − R�x

dV

dx3
− �n

d�

dx3

and

Q = q + V̄ N ,

�n = �N + V̄ �NR�x,

where

R� =
[

cos � − sin �
sin � cos �

]
, � =

[
0 −1
1 0

]
.

Proof. In a first time, we will establish a relation which will
be useful to obtain the twist and bending equations.

Problem P5:
The cancellation of the factor of �5 leads to problem P5

which writes

�
5
n

�r
+ �
4

t

�s
− c0


4
n + rc0

�
3
t

�s
+ �
3

3

�x3
= −f in �0, (112)


5
n = g± for r = ±1,


5
t = 0 for s = s− and s = s+. (113)

Using (113), the integration of Eq. (112) with respect to r, after
projection onto the plane of a section, leads to

∫ 1

−1
�

(
�
4

t

�s
− c0


4
n + rc0

�
3
t

�s
+ �
3

3

�x3

)
dr

= −
∫ 1

−1
�f dr − �[g+ − g−], (114)

where we recall that � = (I − e3 ⊗ e3). On the other hand,
let us multiply Eq. (111) by r and integrate it with respect to r
after projection onto the plane of a section. We get

∫ 1

−1
�

(
r
�
4

n

�r
+ r

�
3
t

�s
+ r

�
2
3

�x3

)
dr = 0.

Using (102), an integration by parts of the first term leads to

∫ 1

−1
�

(
−
4

n + r
�
3

t

�s
+ r

�
2
3

�x3

)
dr = 0. (115)

Let us now multiply the previous equation with c0(s) and re-
place it in (114). We obtain

∫ 1

−1
�

(
�
4

t

�s
+ �
3

3

�x3
− rc0

�
2
3

�x3

)
dr = −p, (116)

where we set

p =
∫ 1

−1
�f dr + �[g+ − g−].

This last equation will be used to establish the twist and bend-
ing equilibrium equations. To obtain the twist equation, we let
appear explicitly a torque in the equations. To do this, let us
multiply Eq. (116) with ��1, and integrate the result with re-
spect to s. We obtain

∫ s+

s−

∫ 1

−1
��1�

(
�
4

t

�s
+ �
3

3

�x3
− rc0

�
2
3

�x3

)
dr ds

= −
∫ s+

s−
��1p ds. (117)

As we have

��1�
�
4

t

�s
= ���1�
4

t

�s
− ���1

�s
�
4

t
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and

���1

�s
= �

��1

�s
= �T = N

we get

��1�
�
4

t

�s
= ���1�
4

t

�s
− 
4

tN .

Using the last relation and the boundary condition (103), Eq.
(117) becomes∫ s+

s−

∫ 1

−1

(
−
4

tN + ��1�
�
3

3

�x3
− rc0��1�

�
2
3

�x3

)

× dr ds = −Mt , (118)

where we set

Mt =
∫ s+

s−
��1p ds.

Now, to simplify Eq. (118), we use the following relation es-
tablished in Appendix A:∫ 1

−1

4
tN dr =

∫ 1

−1

(

4
nT + �3

t3
��1

�x3
N

)
dr . (119)

Using the previous relation, Eq. (118) can be written as∫ s+

s−

∫ 1

−1

(
−
4

nT − �3
t3

��1

�x3
N + ��1�

�
3
3

�x3

−rc0��1�
�
2

3

�x3

)
dr ds = −Mt . (120)

Now let us explain every term of Eq. (120) with respect to the
data of the problem.

To obtain the expression of 
4
nT , let us project Eq. (115) of

problem P4 onto T. We get∫ 1

−1

(
−
4

nT + r
�
3

tT

�s
− rc0


3
tN + r

�
2
3T

�x3

)
dr = 0.

Using the boundary condition (83), the integration of this equa-
tion with respect to s leads to∫ s+

s−

∫ 1

−1

(
−
4

nT − rc0

3
tN + r

�
2
3T

�x3

)
dr ds = 0. (121)

On the other hand, as we proved that �2
t t = 0 and 
3

n = 0,
expression (130) of 
3

tN established in Appendix A reduces to


tN
3 = �2

t3
��1

�x3
N .

This last relation enables to write Eq. (121) as follows∫ s+

s−

∫ 1

−1

4
nT dr ds

=
∫ s+

s−

∫ 1

−1

(
−rc0�

2
t3

��1

�x3
N + r

�
2
3T

�x3

)
dr ds. (122)

Thus we have an explicit expression for the first term of (120).
Let us now explain the other terms depending on ��1. First
we have

��1�
�
2

3

�x3
= �

�x3

[
��1�
2

3

]
− ���1

�x3
�
2

3.

As �
2
3 = 
2

3T T = �2
t3T , we easily obtain

���1

�x3
�
2

3 = �2
t3

��1

�x3
�T = −�2

t3
��1

�x3
N

so that

��1�
�
2

3

�x3
= �

�x3

[
��1�
2

3

]
+ �2

t3
��1

�x3
N . (123)

To explain the term involving 
3
3, we use the following relation

whose proof is detailed in Appendix A:

�
3
3 = 
3

t3T + �2
t3�N + �2

33
��1

�x3
. (124)

Using relation (124), as

��1�
�
3

3

�x3
= �

�x3

(
��1�
3

3

)
− ���1

�x3
�
3

3

we have

��1�
�
3

3

�x3
= �

�x3

(
��1�
3

3

)
+ 
3

t3
��1

�x3
N − �2

t3
��1

�x3
�T .

Let us replace (122) and (123) in (117). As �2
t3 = 
2

t3 in linear
with respect to r according to (109), we obtain

d

dx3

[∫ s+

s−

∫ 1

−1

(
− r�2

t3 − rc0��1T 
2
3T

+��1�
3
3

)
dr ds

]
= −Mt .

As �1 = HT + QN , the last equation becomes

d

dx3

[∫ s+

s−

∫ 1

−1

(
− r(1 − c0Q)�2

t3 − �3
t3Q

+�2
33��1 ��1

�x3

)
dr ds

]
= −Mt . (125)

To explain the expression of �3
t3Q, let us start again from Eq.

(111) of problem P4, which is multiplied with �N and pro-
jected onto e3. An integration with respect to r and s then leads
to∫ s+

s−

∫ 1

−1

(
�N

�
4
n3

�r
+ �N

�
3
t3

�s
+ �N

�
2
33

�x3

)
dr ds

= −
∫ s+

s−

∫ 1

−1
�Nf3 dr ds −

∫ s+

s−
�N [g+

3 − g−
3 ] ds.
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Using the boundary conditions (83) and (102), and integrating
by parts the second term, we obtain

∫ s+

s−

∫ 1

−1

(
Q�3

t3 + �N

��2
33

�x3

)
dr ds = −Mt

3

with

Mt
3 =

∫ s+

s−

∫ 1

−1
�Nf3 dr ds +

∫ s+

s−
�N

[
g+

3 − g−
3

]
ds.

Finally from (125), we obtain

d

dx3

[∫ s+

s−

∫ 1

−1

(
−r(1 − c0Q)�2

t3 + �N

��2
33

�x3

+�2
33��1 ��1

�x3

)
dr ds

]
= −Mt − dMt

3

dx3

which corresponds to the twist equation of Result 4. �

Result 5 (Bending equations). For a level of applied forces
such as Ft =Fn = �5, Gt =Gn = �5 and F3 =G3 = �4, the di-
mensionless unknowns of the displacement field V (x3), u3(x3)

and �(x3) are solution of the following bending equations:

E

2


d2

dx2
3

[∫ s+

s−

∫ 1

−1

[∥∥∥∥�U1

�x3

∥∥∥∥
2

+ 2
�u2

3

�x3

]
�1 dr ds

]

+ d

dx3

[∫ s+

s−

∫ 1

−1
2r2c0

d�

dx3
T dr ds

]
= −P − dM

f
3

dx3
,

where

P =
∫ s+

s−

∫ 1

−1
�f dr ds +

∫ s+

s−
�

[
g+ − g−]

ds,

M
f
3 =

∫ s+

s−

∫ 1

−1
�1f3 dr ds +

∫ s+

s−
�1 [

g+
3 − g−

3

]
ds

and

�1 = U1 + x

with∣∣∣∣∣
U1 = V (x3) + (R� − I2)x,

u2
3 = u3(x3) − R�x

dV

dx3
− �n

d�

dx3
.

Proof. The proof of this result starts from (116) which is inte-
grated with respect to s. Using the boundary condition (103),
we get

∫ s+

s−

∫ 1

−1
�

(
�
3

3

�x3
− rc0

�
2
3

�x3

)
dr ds = −P

with P = ∫ s+
s− p ds.

This equation can also be written as

d

dx3

{∫ s+

s−

∫ 1

−1
�

(

3

3 − rc0

2
3

)
dr ds

}
= −P .

As we have already proved at (124) that

�
3
3 = �3

t3T + �2
t3� + �2

33
��1

�x3

we obtain (�2
t3 being linear with respect to r)

d

dx3

{∫ s+

s−

∫ 1

−1

(
�3

13T + �2
33

��3

�x3
− rc�
2

3

)
dr ds

}
= −P .

(126)

The last unknown term to explain is �3
t3T . To do this, let us use

again Eq. (111) of problem P4 which is projected upon e3. An
integration upon the thickness then leads to

∫ 1

−1

(
�
3

t3

�s
+ �
2

33

�x3

)
dr = −

∫ 1

−1
f3 dr − [

g+
3 − g−

3

]
.

Now let us multiply the last equation with �1 and integrate the
result with respect to s. We get

∫ s+

s−

∫ 1

−1

(
�1 ��3

t3

�s
+ �1 ��2

33

�x3

)
dr ds

= −
∫ s+

s−

∫ 1

−1
�1f3 dr ds −

∫ s+

s−
�1 [

g+
3 − g−

3

]
ds

whose first term is then integrated by parts. Using (83), we
obtain

∫ s+

s−

∫ 1

−1

(
−�3

t3T + �1 ��2
33

�x3

)
dr ds = −M

f
3 ,

where we set

M
f
3 =

∫ s+

s−

∫ 1

−1
�1f3 dr ds +

∫ s+

s−
�1 [

g+
3 − g−

3

]
ds.

Replacing this last expression in (126), we obtain

d

dx3

{∫ s+

s−

∫ 1

−1
�1 ��2

33

�x3
dr ds

+
∫ s+

s−

∫ 1

−1

(
�2

33
��1

�x3
− rc0�

2
t3T

)
dr ds

}

= −P − dM
f
3

dx3

or equivalently

d

dx3

{∫ s+

s−

∫ 1

−1

(
��2

33�
1

�x3
− rc0�

2
t3T

)
dr ds

}

= −P − dM3

dx3
.
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Finally substituting �2
33 and �2

t3 with their expressions of Result
2, we obtain

E

2


d2

dx2
3

[∫ s+

s−

∫ 1

−1

[∥∥∥∥�U1

�x3

∥∥∥∥
2

+ 2
�u2

3

�x3

]
�1 dr ds

]

+ d

dx3

[∫ s+

s−

∫ 1

−1
2r2c0

d�

dx3
T dr ds

]
= −P − dM3

dx3

which constitutes the bending equations of Result 5. �

6. Conclusion

In this paper, we deduced a non-linear model for thin-walled
rods with strongly curved profile, from asymptotic expansion of
the non-linear three-dimensional equations. With the construc-
tive approach developed, based on a dimensional analysis of
equilibrium equations, the order of magnitude of the displace-
ments are directly deduced from the level of applied forces.

The non-linear kinematics obtained in Result 1 generalize
that of Vlassov for large or moderate rotations. It is generally
obtained in the literature by making a priori assumptions sim-
ilar to Vlassov ones [3–8,10]. In contrary, in this paper these
non-linear kinematics are justified rigorously by asymptotic ex-
pansions for the level of applied forces considered ; the levels
of forces being characterized by the non-dimensional numbers
naturally introduced.

The non-linear one-dimensional traction, twist and bending
equations of Results (3)–(5) are not classical and do not seem
to have any equivalent in the literature. They constitute a sys-
tem of four non-linear differential equations strongly coupled,
which can be expressed in terms of the four unknowns7 V (x3),
u3(x3), �(x3). In particular, the twist equation contains cubic
terms with respect to � as in the model of Gobarah and Tso [4]
derived from a priori assumptions. Moreover the twist equa-
tion is coupled with the traction (and the bending) equations.
This coupling characterizes the shortening effect observed ex-
perimentally for large rotations.

Appendix A. Proof of some intermediary formula

In this appendix we detail the proof of the intermediary
(88) (107) (119) (124) used in the calculations of the previous
results.

First, using relations (30) and (31), we have


2
t = �2

t t T + �1
t t

��2

�s
+ �2

tnN + �2
t3e3,


2
n = �2

tnT + �2
nnN + �2

n3e3

and as a consequence


2
tN = 
2

nT + �1
t t

�U2

�s
N . (127)

7 The displacement V (x3) has two components in the plane of a section.

As �1
t t = 
1

t T is linear with respect to r according to (77), we
deduce that∫ 1

−1

2
tN dr =

∫ 1

−1

2
nT dr

which concludes the proof of (88).
Let us now establish (107) used for the proof of Result (2)

and which writes∫ 1

−1

3
tN dr =

∫ 1

−1

3
nT dr .

According to the previous calculations, we have


3
t = �3

t t T + �2
t t

�U2

�s
+ �3

tnN + �3
t3e3 + �2

t3
��1

�x3
, (128)


3
n = �3

tnT + �3
nnN + �3

n3e3, (129)

so that


3
tN = 
3

nT + �2
t t

�U2

�s
N + �2

t3
��1

�x3
N . (130)

According to expression (97) of 
2
t , the components �2

t t = 
2
t T

and �2
t3 = 
2

t e3 are linear with respect to r and we get

∫ 1

−1

3
tN dr =

∫ 1

−1

3
nT dr

which concludes the proof of (107).
The proof of relation (119)

∫ 1

−1

4
tN dr =

∫ 1

−1

(

4
nT + �3

t3
��1

�x3
N

)
dr

can be made in a similar way. Indeed, using relations (30) and
(31), we have


4
n = �4

tnT + �4
nnN + �4

n3e3,


4
t = �4

t t T + �3
t t

��2

�s
+ rc0�

3
t t T + �4

tnN + �4
t3e3

+ �3
t3

��1

�x3
+ �2

t3
��2

�x3
.

As ��2/�s = �U2/�s − rc0T according to (67), we have


4
tN = �4

tn + �3
t t

�U2

�s
N + �3

t3
��1

�x3
N + �2

t3
��2

�x3
N .

Moreover, as
(
�U2/�s

)
N = � according to (108), we get


4
tN = �4

tn + �3
t t� + �3

t3
��1

�x3
N + �2

t3
�U2

�x3
N .
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Now let us integrate with respect to r the previous equation.
We obtain

∫ 1

−1

4
tN dr =

∫ 1

−1

(

4
nT + �3

t t� + �3
t3

��1

�x3
N + �2

t3
�U2

�x3
N

)
dr .

According to (109) (or to Result 2), �2
t3 is linear with respect to

r. On the other hand, the previous results and in particular (128)

leads to �3
t t =
3

t T . Moreover using the boundary condition (83)

and Eq. (111), we get
∫ 1
−1 �3

t t dr = 0. So that the last equation
reduces to

∫ 1

−1

4
tN dr =

∫ 1

−1

(

4
nT + �3

t3
��1

�x3
N

)
dr

which concludes the proof of (119).
To finish let us established relations (124) used in the proof

of Result 4:

�
3
3 = 
3

t3T + �2
t3�N + �2

33
��1

�x3
.

Using relations (30) and (31), we have


3
3 = �3

t3T + �2
t3

��2

�s
+ rc0�

2
t3T + �3

33e3 + �2
33

��1

�x3
.

Projecting this relation onto the plane of a section and replacing
�2 with its expression (67), we obtain

�
3
3 = �3

t3T + �2
t3�

�U2

�s
+ �2

33�
��1

�x3
.

On the first hand, we have �(�U2/�s) = �N because
(�U2/�s)N = � according to (108). Moreover �U2/�sT = 0
according to (84). Thus we get

�
3
3 = �3

t3T + �2
t3�N + �2

33�
��1

�x3
.

On the other hand, we have


3
t = �3

t t T + �3
t3e3 + �2

t3
��1

�x3
.

Thus 
3
t3 = �3

t3 and

�
3
3 = 
3

t3T + �2
t3�N + �2

33�
��1

�x3

which concludes the proof of relation (124).
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