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In the first part of this paper we have deduced a classification of asymptotic shallow
shell models with respect to the level of applied forces, from the non-linear three-
dimensional elasticity. We have used a constructive approach based on a dimensional
analysis of the non-linear three-dimensional equilibrium equations, which naturally
makes appear dimensionless numbers characterizing the applied forces (F and G) and
the geometry of the shell (ε and C). To limit our study to one-scale problems, these
dimensionless numbers are expressed in terms of the relative thickness ε of the shell,
considered as the perturbation parameter. In the first part, we have studied the case
of shallow shells corresponding to C = ε2. In the second part of this paper, we will
study the case of strongly curved shells for which C = ε. The classification that we
obtain is then more complex. It depends not only on the force levels, but also on
the existence of inextensional displacements which keep invariant the metric of the
middle surface of the shell.
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1. Introduction

This paper is a continuation of [10] to which we will refer for the definitions
and notations not explained here.

We recall that in the first part of this paper we have developed a constructive
approach which enables us to deduce a classification of asymptotic shell models
from the three-dimensional nonlinear elasticity. This approach is based on a
dimensional analysis of nonlinear equilibrium equations which naturally makes
appear dimensionless numbers, ε and C which reflect the geometry of the shell, F
and G which characterize the applied forces. The reduction to a one-scale problem
leads us to link C, F and G to the small reference parameter ε. In the first part,
we have established a classification of shallow shells models (corresponding to
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C = ε2) with respect to the level forces, from asymptotic expansion of the three-
dimensional equations of nonlinear elasticity. In the second part of this paper, we
propose to apply the same approach for strongly curved shells for which C = ε.
The classification obtained also depends on the geometric rigidity of the middle
surface of the shell. However, contrary to the first part of this paper, the shell
is now assumed to be clamped only on a part of the lateral surface and free on
the other part.

The geometric rigidity of the shell is characterized by the existence of inex-
tensional displacements which keep invariant the metric of the middle surface, in
the linear and the nonlinear case. As the shell is assumed to be clamped only on
a part of its lateral surface, such inextensional displacements are possible. Thus,
in what follows, we will use the following terminology :

– a non-inhibited or inhibited shell in the nonlinear range (or just non-inhibited/
inhibited shell) will characterize a shell whose middle surface admits or not non-
linear inextensional mappings or displacements1) (see (5.2) for the mathematical
definition).

– a non-inhibited or inhibited shell in the linear range (or linearly non-inhibited/
inhibited shell) will characterize a shell whose middle surface admits or not linear
inextensional displacements2) (see (5.64) for the mathematical definition).

Let us notice that the definition of a non-inhibited shell in the nonlinear
range used here is different from the one of “bendable surface” according to the
terminology of Szwabowicz [24]. It is to be reminded that the importance of
such inextensional deformations in shell theory is known since a long time (see for
example Love [12], Novozhilov [17], Goldenveizer [9]). However, whereas
the study of inextensional displacements in linear theory has been systematized
in[2][8][19][20][26], only a few works on nonlinear inextensional displacements
exist [24].

Moreover, to our knowledge there is no work which studies the link between
linear and nonlinear inextensional displacements. In many practical cases, if the
shell is inhibited (respectively non-inhibited) in the nonlinear range, then it is
linearly inhibited (respectively non-inhibited). However, some examples exist
which refute this observation. Indeed, let us consider half a sphere clamped on
its lateral surface. If it is deformed so as to obtain the symmetric configuration
with respect to the base, the transformation is inextensional in the nonlinear
range, whereas it is well known that half a sphere completely clamped on its
lateral surface is linearly inhibited (see [2]).

1)The nonlinear inextensional mappings keep invariant the nonlinear metric of the middle
surface.

2)The linear inextensional displacements keep invariant the linearized metric of the middle
surface.
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2. Decomposition of the three-dimensional problem

As in the first part, we consider a shell of 2h0 thickness, whose middle surface
is ω∗0 , which occupies the domain Ω

∗

0 in its reference configuration, where
Ω∗0 = ω∗0×]− h0, h0[ is an open set of R

3. We recall that ω∗0 denotes a connected
surface embedded in R

3, whose diameter is L0, with a “smooth enough” boundary
γ∗0 . We note N0 the unit normal to ω∗0 , C∗0 its curvature operator, q∗0 a generic
point of Ω

∗

0 and Γ∗±0 = ω∗0 × {±h0} the upper and lower faces of the shell.
Contrary to the first part of this paper, the shell is now assumed to be clamped
only on a portion Γ1∗

0 = γ1∗
0 × [−h0, h0] of the lateral surface Γ∗0 = γ∗0× [−h0, h0],

and free on the other portion Γ2∗
0 = γ2∗

0 × [−h0, h0], where (γ1∗
0 , γ2∗

0 ) denotes a
partition of γ∗0 . Thus inextensional displacements are possible.

Fig. 1. Initial and final shell configuration.

Within the framework of nonlinear elasticity, the unknown mapping φ∗: Ω
∗

0→ R
3

and the second Piola-Kirchhoff tensor Σ∗ solve the equilibrium equations :

(2.1)

Div∗(H∗) = −f∗ in Ω∗0,

H∗N0 = ±g
∗± on Γ∗±0 ,

φ∗ = id on Γ1∗
0 ,

H∗n0 = 0 on Γ2∗
0 ,

with H∗ = Σ∗F ∗, where F ∗ =
∂φ∗(q∗0)

∂q∗0
= I3 +

∂U∗

∂q∗0
denotes the linear tangent

mapping to φ∗, n0 the unit external normal to Γ∗0, f
∗ : Ω

∗

0 → R
3 and g∗± :

Γ∗±0 → R
3 the applied body and surface forces, and id the identity mapping

of R
3. Let us recall that in the framework of Saint-Venant Kirchhoff materials,
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Σ∗ is linked to the nonlinear Green-Lagrange strain tensor E∗ = (F
∗
F ∗ − I3)/2

by the constitutive relation Σ∗ = λ Tr(E∗)I3 + 2µE∗, where I3 denotes the
identity of R

3, λ and µ the Lamé constants of the material.
To make the expansion of the boundary condition H∗n0 = 0 on Γ2∗

0 , we must
have an explicit expression of the normal n0 with respect to the unit normal ν0

to γ∗0 . We have the following proposition which has been proved in [6] :

Proposition 1. Let ω∗0 be a connected surface embedded in R
3. Let us

consider the shell of 2h0 thickness which occupies the domain

Ω∗0 =
{
q∗0 = p∗0 + z∗N0 where p∗0 ∈ ω

∗
0 and z∗ ∈ [−h0,+h0]

}
.

Then the unit external normal n0 to the lateral surface Γ∗0 is given by:

(2.2) n0 =
1∣∣∣∣κ∗−1

0 ν0

∣∣∣∣κ
∗−1
0 ν0

with κ∗0 = I∗0 − z∗C∗0 and where I∗0 denotes the identity on Tω∗0 .

Thus, the boundary condition H∗n0 = 0 on Γ2∗
0 can be written as :

(2.3) H∗Π0κ
∗−1
0 ν0 = 0 on Γ2∗

0 .

In the case of strongly curved shells, it is not necessary to decompose com-
pletely the equilibrium Eqs. (2.1) onto Tω∗0⊕RN0 as in the first part. To simplify
the calculations, we will use only a partial decomposition. To do this, we intro-
duce the two-dimensional divergence div∗t3 defined as follows3):

Let A be an operator field defined on ω∗0 which takes its values in L(R3, Tω∗0).
Let us set At = AΠ0 and As = AN0. Then we have :

div∗t3(A) = div
∗(At)−AsC

∗
0 + (div

∗(As) + Tr(AtC
∗
0 ))N0

where div∗ denotes the two-dimensional divergence on ω∗0.

3)This definition is similar to the one introduced in [25] by the author.
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Thus, if we partially decompose H∗ as follows : H∗ = Π0H
∗ + N0N0H

∗, the
equilibrium Eq. (2.1) can be written :

(2.4)





div∗t3(κ
∗−1
0 Π0H

∗)− div∗(κ∗−1)Π0H
∗

−Tr(κ∗−1
0 C∗0 )N0H

∗ +
∂N0H

∗

∂z∗
= −f∗ in Ω∗0,

H
∗±
N0 = ±g∗± on Γ∗±0 ,

φ∗ = id on Γ1∗
0 ,

H
∗
Π0κ

∗−1
0 ν0 = 0 on Γ2∗

0 .

3. Dimensional analysis and one-scale problem

As in the first part, we define the following dimensionless physical data and
unknowns of the problem :

(3.1)

p0 =
p∗0
L0
, q0 =

q∗0
L0
, φ =

φ∗

φr
, U =

U∗

Ur
, z =

z∗

h0
,

C0 =
C∗0
Cr

, fn =
f∗t
ftr

, gn =
f∗n
fnr

, gn =
g∗t
gtr

, gt =
g∗n
gnr

,

where the variables with subscript r are the reference ones. The new variables
which appear without an asterisk are dimensionless. To avoid any assumptions
concerning the order of magnitude of the displacements, the reference scales φr
and Ur are firstly assumed to be equal to L0. If necessary, it will always be
possible to define new reference scales for the displacement.

On the other hand, we will use as in the first part, the following notations to
simplify the calculations :

(3.2) F = εF ∗, E = ε2E∗, Σ =
ε2

µ
Σ∗ and H =

ε3

µ
H∗.

Then the dimensionless expressions of F , E, Σ and H are given by:

(3.3) F = ε
∂φ

∂p0
κ−1

0 +
∂φ

∂z
N0.

(3.4) 2E = FF − ε2I3, Σ = β Tr(E)I3 + 2E, H = β Tr(E)F + 2EF

and can be calculated from the mapping φ.
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With these notations, the dimensional analysis of Eq. (2.4) leads to the dimen-
sionless equilibrium equations:

(3.5)

εdivt3(κ
−1
0 Π0H)− εdiv(κ−1

0 )Π0H− CTr(κ
−1
0 C0)N0H+

∂N0H

∂z

= −ε3Ff in Ω0,

H
±
N0 = ±ε

3Gg on Γ±0 ,

φ = id on Γ1
0,

HΠ0κ
−1
0 ν0 = 0 on Γ2

0,

and naturally introduces the same dimensionless numbers ε, C, F and G as for

shallow shells [10]. We recall that the two shape factors ε =
h0

L0
and C = h0Cr

characterize the geometry of the shell (relative thickness and curvature), whereas

the force ratios F = Ft = Fn =
h0ftr
µ

=
h0fnr
µ

and G = Gt = Gn =
gtr
µ
=
gnr
µ

characterize the forces applied to the shell4).
To apply the standard technique of asymptotic expansions, the problem must

be reduced to a one-scale problem. To do this, ε is chosen as the reference
perturbation parameter and the other dimensionless numbers must be linked to ε.
In the first part of this paper, we have studied shallow shells which correspond
to C = ε2. In the second part, we will consider strongly curved shells for which
C = ε.

On the other hand, as in the first part, the study of all the force levels can
be reduced without loss of generality to the particular choices Ft = Gt and
Fn = Gn. Moreover, as in the case of strongly curved shells the tangential and
the normal direction play a symmetrical role, we will only consider force levels
such as Ft = Fn = Gt = Gn. However, to separate body forces from surface forces
in the equations, we have set F = Ft = Fn and G = Gt = Gn, even if we always
consider force levels such as F = G.

Finally, the classification of asymptotic shell models will be deduced for de-
creasing force levels, from severe (F = G = ε) to low (F = G = εn≥4).

4)More precisely, Ft and Fn (respectively Gt and Gn) represent the ratio of the resultant on
the thickness of the body forces (respectively the ratio of the surface forces) to µ considered
as a reference stress.
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4. The nonlinear membrane model

In this section, we begin the classification with severe force levels. We will
show that the asymptotic expansion of equations naturally leads to the nonlinear
membrane model.

4.1. Asymptotic expansion of equations

We consider a strongly curved shell (C = ε) subjected to a severe force level
G = F = ε. Once reduced to a one-scale problem, we postulate that the dis-
placement U or equivalently, the mapping φ = id+U admits a formal expansion
with respect to ε:

U = U0 + εU1 + ε2U2 + ...

φ = φ0 + εφ1 + ε2φ2 + ...

with φ0 = iω0
+ U0, φ1 = U1 + zN0 and φi = U i for i ≥ 2. If necessary, it will

be possible to decompose U into Tω0 ⊕ RN as follows : U = V + uN0.
The expansion of φ implies via (3.3) and (3.4) an expansion of F , E, Σ and

H whose terms will be calculated when necessary. Let us just notice that we now
have :

κ−1 = (I0 − εzC0)
−1 = I0 + zεC 1

0 + z2ε2C 2
0 + ...

Then the asymptotic expansion of equations leads to the following result:

Result 1.

For applied forces such as G = F = ε, the leading term φ0 of the expansion
of φ depends only on p0 and is a solution of the following nonlinear membrane
model:

divt3

(
n0
t

∂φ0

∂p0

)
= −p in ω0,

φ0 = iω0
on γ1

0 ,

n0
t ν0 = 0 on γ2

0

where ν0 denotes the unit external normal to γ0 and where

n0
t =

4β

2 + β
Tr(∆0

t )I0+4∆
0
t , 2∆0

t =
∂φ0

∂p0

∂φ0

∂p0
−I0 and p = g++g−+

+1∫

−1

fdz.

P r o o f. The proof of this result is similar to the one of the nonlinear mem-
brane model of the first part of this paper [10]. Let us just recall the intermediate
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results which will be used in what follows. On one hand, the second term φ1 of
the expansion on φ can be written as:

(4.1) φ1 = U1(p0) + zθ0N with θ0 =

√
1−

2β

β + 2
Tr(∆0

t )

where N denotes the unit vector orthogonal to the surface ω = φ0(ω0) oriented
so as θ0 to be positive. On the other hand, according to (3.3)–(3.4), we get :

(4.2) F 1 = θ0NN0 +
∂φ0

∂p0
.

2

4.2. Comparison with existing results

To compare the nonlinear membrane model obtained in Result 1 to other
existing models, we must explain its associated weak formulation. To do this, let
us define the space of admissible displacements :

V (ω0) =
{
U : ω0 → R

3, “smooth”, U = 0 on γ1
0

}

and the space of admissible mappings :

Q(ω0) =
{
φ : ω0 → R

3, “smooth”, φ = iω0
on γ1

0

}

Then the two-dimensional equations of Result 1 can be written in the following
weak formulation:

Result 2.

The mapping φ0 ∈ Q(ω0) satisfies the following weak problem :

(4.3)

∫

ω0

Tr (n0
t δ∆

0
t )dω0 =

∫

ω0

pδφ0dω0, ∀ δφ0 ∈ V (ω0)

with

n0
t =

4β

2 + β
Tr (∆0

t )I0 + 4∆
0
t , 2∆0

t =
∂φ0

∂p0

∂φ0

∂p0
− I0,

where δ∆0
t denotes the virtual variation of ∆0

t due to the virtual displacement
δφ0 associated to φ0.

The proof of this result is classical and is based on the Stokes formula. It will
not be detailed here. Let us notice that the non-linear membrane model has been
also deduced by asymptotic expansion in [13] using a description of the shell in
local coordinates. The equations obtained are the same as the ones of Result 2.
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5. Non-inhibited shells in the nonlinear range

5.1. Nonlinear model coupling membrane-bending effects

In this section, we consider a shell non-inhibited in the nonlinear range sub-
jected to a high force level of ε2 order. First, using the previous results, we
will specify the expressions of φ0 and φ1. Then we will continue the asymptotic
expansion of the equilibrium Eq. (3.5).

5.1.1. Characterization of φ0. For a level force such as G = F = ε2, the Results 1
and 2 are still valid. We then obtain the same nonlinear membrane model without
a right-hand side with the following associated minimization problem:

Find φ0 which minimizes the functional J =

∫

ω0

α dω0 on Q(ω0), where

α =
2β

β + 2
Tr(∆)2 + 2Tr[(∆)2] and 2∆ =

∂φ

∂φ

∂φ0

∂p0
− I0.

As the density of energy α is positive and is equal to zero if and only if ∆ = 0,
the solutions φ0 of this minimization problem satisfy ∆ = 0 or equivalently:

(5.1)
∂φ0

∂p0

∂φ0

∂p0
= I0.

As the shell is assumed to be non-inhibited, Eq. (5.1) admits other solu-
tions as rigid mappings. Let us denote by Iinex(ω0) the space of inextensional
mappings:

(5.2) Iinex(ω0)

=

{
φ : ω0 → R

3, “smooth”,
∂φ

∂p0

∂φ

∂p0
= I0 in ω0, φ = iω0

on γ1
0

}

Thus we have φ0 ∈ Iinex(ω0) and the expression (4.1) of φ1 then becomes:

(5.3) φ1 = U1(p0) + zN

In the same way, the expression (4.2) of F 1 reduces to:

(5.4) F 1 =
∂φ0

∂p0
+NN0

which implies that F 1F 1 = I0 +N0N0 = I3. On the other hand, the expansion
of the equation of continuity5) detF ∗ ≥ a > 0 in Ω∗0 leads to detF 1 > 0. Thus

5)See condition (2) in the first part [10].
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F 1 is a rotation of R
3 and we have :

F 1F 1 = F 1F 1 = I3 and (F 1)−1 = F 1.

Then replacing the expression (5.4) of F 1 in F 1F 1 = I3, we get:

(5.5)
∂φ0

∂p0

∂φ0

∂p0
+NN = I3.

Using the decomposition I3 = I + NN on Tω ⊕ RN , where ω = φ0(ω0) and I
denotes the identity on Tω, we obtain

(5.6)
∂φ0

∂p0

∂φ0

∂p0
= I.

This relation will be used later to simplify the calculations.
Finally, using (3.3), (3.4), (5.1) and (5.3), we can calculate the first non-zero

terms of the expansions of F , E, Σ and H. On the one hand F 1 is given by (5.4),
and on the other hand we have :

(5.7)
F 2 =

∂φ2

∂z
N0 +

∂U1

∂p0
− z

∂φ0

∂p0
K0
t , 2E3 = F 1F 2 + F 2F 1,

Σ3 = βTr(E3)I3 + 2E
3, H4 = Σ3F 1,

with K0
t = C̃ − C0 and where C̃ = −

∂φ0

∂p0

∂N

∂p0
= −

∂φ0

∂p0
C
∂φ0

∂p0
denotes the

pull-back on ω0 of the curvature operator C of the surface ω = φ0(ω0). Here
K0
t = C̃ − C0 represents the classical nonlinear change of curvature.

5.1.2. Asymptotic expansion. Taking into account (5.1), we continue the asymp-
totic expansion of equations. We then have the following result:

Result 3.

For a non-inhibited shell in the nonlinear range, subjected to a high level of
forces G = F = ε2, the leading terms φ0 and φ1 of the expansion of φ satisfy:

i) φ0 depends only on p0 and φ0 ∈ Iinex(ω0).

ii) φ1 = U1 + zN , where U1 depends only on p0 and N denotes the normal to
the deformed configuration φ0(ω0).

iii) φ0 and U1 are solutions of the following nonlinear equations:



Classification of thin shell models. . . 187





divt3

(
n1
t

∂φ0

∂p0

)
= −p in ω0

U1 = 0 on γ1
0

n1
t ν0 = 0 on γ2

0

and




divt3

(
(χ− C0m

0
t )
∂φ0

∂p0
+ n1

t

∂U1

∂p0
− div(m0

t )N

)
= −P in ω0

φ0 − iω0
= Θ0 = 0 on γ1

0

χν0 −m0
tC0ν0 = m0

t ν0 =M
∂φ0

∂p0
ν0 − div (m

0
t )ν0 = 0 on γ2

0

where χ is a field of symmetrical tensors which depends only on φ0, φ1 and φ2,
and where:

n1
t =

4β

2 + β
Tr (∆1

t )I0 + 4∆
1
t , 2∆1

t =
∂φ0

∂p0

∂U1

∂p0
+
∂U1

∂p0

∂φ0

∂p0
,

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
K0
t , K0

t = C̃ − C0,

C̃ = −
∂φ0

∂p0

∂N

∂p0
, Θ0 = −

∂φ0

∂p0
N0,

p = g+ + g− +

1∫

−1

f dz, M = g+ − g− +

1∫

−1

zf dz,

P = divt3

(
∂φ0

∂p0
MN

)
− Tr(C0)M.

Before giving the proof of this result which is rather technical, let us notice
that the model obtained here is not easy to interpret in this local formula-
tion. Contrary to the asymptotic models previously obtained, this one takes into
account the two unknowns φ0 and U1, where φ0 is an inextensional mapping
generating the curvature variation K0

t , and U1 is a displacement generating the
membrane strain ∆1

t .
On the other hand, let us remark that the expression of the field of symmet-

rical tensors χ, which is complex and depends on φ0, φ1 and φ2, is not given
explicitly. It is not necessary because it will vanish in the associated weak for-
mulation which is given in the next result. For an interpretation of this model
the reader can be referred to Result 4.
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P r o o f. The proof can be split into five steps, from i) to v).
i) Determination of φ2

Problem P4 reduces to:

∂H4N0

∂z
= 0 in Ω0,

H4
±
N0 = 0 on Γ±0 ,

which leads to H4N0 = 0 in Ω0. Using (5.6) we get F 1Σ3N0 = 0 or equivalently

(5.8) Σ3N0 = 0 in Ω0

because F 1 is inversible.
Then replacing Σ3 by its expression (5.7), Eq. (5.8) becomes:

[
(β + 2)N

∂φ2

∂z
+ β Tr(∆1

t − zK0
t )

]
N0 +

∂U1

∂p0
N0

∂φ0

∂p0

∂φ2

∂z
= 0

where 2∆1
t =

∂φ0

∂p0

∂U1

∂p0
+
∂U1

∂p0

∂0φ0

∂p0
.

Now, let us project the last equation onto Tω0 and N0. We get:

∂φ0

∂p0

∂φ2

∂z
= −

∂U1

∂p0
N and N

∂φ2

∂z
−

β

β + 2
Tr(∆1

t − zK0
t )

or equivalently, using (5.6):

(5.9) I
∂φ2

∂z
=
∂φ0

∂p0

∂U1

∂p0
N and N

∂φ2

∂z
= −

β

β + 2
Tr (∆1

t − zK0
t ).

As I + NN = I3, the two Eq. (5.9) are the projections onto Tω and N of the

vector
∂φ2

∂z
.

Then we have:

(5.10)
∂φ2

∂z
= −

∂φ0

∂p0

∂U1

∂p0
N −

β

β + 2
Tr (∆1

t − zK0
t )N.

A integration with respect to z then leads to the following expression of φ2 :

(5.11) φ2 = U2 − z
∂φ0

∂p0

∂U1

∂p0
N − z

β

2(β + 2)
Tr (2∆1

t − zK0
t )N.

where U2 depends only on p0.
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Now let us calculate the expressions of E3, Σ3 and H4. First, using (5.11),
the expression (5.7) of F 2 becomes:

(5.12)

F 2 = −
∂φ0

∂p0

∂U1

∂p0
NN0 +

∂U1

∂p0
− z

∂φ0

∂p0
K0
t −

β

β + 2
Tr (∆1

t − zK0
t )NN0.

Then multiplying the last equation by F 1, and using the relations

F 1 =
∂φ0

∂p0
+NN0,

∂φ0

∂p0

∂φ0

∂p0
= I0 and N

∂φ0

∂p0
= 0,

we get:

F 1F 2 = −
∂U1

∂p0
NN0+N0N

∂U1

∂p0
+
∂φ0

∂p0

∂U1

∂p0
− zK0

t −
β

β + 2
Tr (∆1

t − zK
0
t )N0N0.

Finally, in view of (5.7), E3, Σ3 and H4 can be expressed as follows :

(5.13)

E3 = ∆1
t − zK0

t −
β

β + 2
Tr (∆1

t − zK0
t )N0N0,

Σ3 =
1

2
(n1

t − 3zm
0
t ),

H4 =
1

2
(n1

t − 3zm
0
t )
∂φ0

∂p0
,

where n1
t =

4β

β + 2
Tr (∆1

t )I0 + 4∆
1
t and m0

t =
4β

3(β + 2)
Tr (K0

t )I0 +
4

3
K0
t .

ii) First equation of Result 3

In view of (5.13), the cancellation of the factor of ε5 in the expansion of
equilibrium Eq. (3.5) leads to problem P5 which reduces to:

divt3(Π0H
4) +

∂N0H
5

∂z
= −f in Ω0,

H5
±
N0 = ±g± on Γ±0 ,

Using (5.13) we get:

(5.14)

1

2
divt3

(
n1
t

∂φ0

∂p0

)
−
3

2
z divt3

(
m0
t

∂φ0

∂p0

)
+
∂N0H

5

∂z
= −f in Ω0.

H5
±
N0 = ±g

± on Γ±0 .
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Let us integrate the above equation upon the thickness. We then obtain:

divt3

(
n1
t

∂U1

∂p0

)
= −p in ω0

where p = g+ + g− +

∫ 1

−1
f dz, which constitutes the first equation of Result 3.

On the other hand, an integration of (5.14) with respect to z leads to:

(5.15) 2N0H
5 = zp+ g+− g−+

1∫

z

f dz −

z∫

−1

f dz−
3

2
(1− z2)divt3

(
m0
t

∂φ0

∂p0

)
.

In what follows, to simplify the calculations, we set:

(5.16) A = N0H
5

=
1

2


zp+ g+ − g− +

1∫

z

f dz −

z∫

−1

f dz −
3

2
(1− z2)divt3

(
m0
t

∂φ0

∂p0

)

 .

iii) Computation of H5 :

Before writing problem P6, let us decompose H5 as follows:

(5.17) H5 = Π0H
5 +N0N0H

5 = Π0H
5 +N0A

according to (5.16). On the other hand, the expression of H5 reduces to:

(5.18) H5 = Σ4F 1 +Σ3F 2

and Eq. (5.17) can be written as:

H5 = Π0Σ
4F 1 +Π0Σ

3F 2 +N0A.

Now, let us decompose also Σ4 and Σ3 as follows : Σ4 = Σ4Π0 + Σ
4N0N0 and

Σ3 = Σ3Π0 +Σ
3N0N0. Then using (5.4), (5.8) and (5.12), the expression of H5

becomes:

(5.19) H5 = Π0Σ
4Π0

∂φ0

∂p0
+Π0Σ

4N0N +Π0Σ
3Π0

(
∂U1

∂p0
− zK0

t

∂φ0

∂p0

)
+N0A.
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On the other hand, let us multiply (5.18) by N0 on the left and by
∂φ0

∂p0
on the

right. Using (5.4) and (5.8), we get N0Σ
4Π0 = A

∂φ0

∂p0
or equivalently

(5.20) Π0Σ
4N0 =

∂φ0

∂p0
A

because Σ4 is symmetrical.
Finally, in view of (5.8), (5.13) and (5.20), the expression (5.19) of H5 be-

comes:

(5.21) H5 = Π0Σ
4Π0

∂φ0

∂p0
+
∂φ0

∂p0
AN+

1

2
(n1

t−3zm
0
t )

(
∂U1

∂p0
− zK0

t

∂φ0

∂p0

)
+N0A.

Let us notice that the calculation of Π0Σ
4Π0 with respect to the displacements

is not necessary. As already noticed, this term will vanish in the weak associated
formulation.

iv) Second equation of Result 3

Problem P6 can be written as:

(5.22)

divt3(Π0H
5 + zC0H

4)− Tr (C0)N0H
5 − zdiv(C0)Π0H

4

+
∂N0H

6

∂z
= 0 in Ω0,

H6
±
N0 = 0 on Γ±0 .

Using the expressions (5.13) and (5.21) of H4 and H5, an integration upon
the thickness of Eq. (5.22) leads to:

(5.23) divt3

[
χ̃
∂φ0

∂p0
+ n1

t

∂U1

∂p0
−
∂φ0

∂p0
divt3

(
m0
t

∂φ0

∂p0

)
N − C0m

0
t

∂φ0

∂p0

]

+Tr(C0)divt3

[
m0
t

∂φ0

∂p0

]
+ div (C0)m

0
t

∂φ0

∂p0
= −P in ω0

where the expressions of P and M are those of Result 3 and where

χ̃ =

∫ 1

−1
Π0Σ

4Π0dz +m0
tK

0
t .

In the last expression, χ̃ is symmetrical because m0
t and K0

t are symmetrical and
commute.
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Now using the following property

Tr (C0)divt3

(
m0
t

∂φ0

∂p0

)
+ div(C0)m

0
t

∂φ0

∂p0
= divt3

(
Tr (C0)m

0
t

∂φ0

∂p0

)
,

Eq. (5.23) becomes:

(5.24) divt3

[
(χ− C0m

0
t )
∂φ0

∂p0
+ n1

t

∂U1

∂p0
−
∂φ0

∂p0
divt3

(
m0
t

∂φ0

∂p0

)
N

]

= −P in ω0

with:

(5.25) χ = χ̃+Tr (C0)m
0
t =

1∫

−1

Π0Σ
4Π0 dz +m0

tK
0
t +Tr (C0)m

0
t .

Let us just notice that χ is a field of symmetrical tensors.

Finally, as
∂φ0

∂p0

∂φ0

∂p0
= I0, it is possible to prove that :

(5.26) divt3

(
m0
t

∂φ0

∂p0

)
∂φ0

∂p0
= div (m0

t )

where div denotes the classical two-dimensional divergence on ω0. Thus Eq. (5.24)
constitutes the second equation of Result 3.

v) Boundary conditions

To conclude the proof, let us examine the boundary conditions. The expan-
sion of the clamping condition φ(q0) = q0 on Γ1

0 leads to U0 = 0, U1 = 0 and
N = N0 on γ1

0 . The last condition N = N0 can also be written Θ0 = 0 on γ1
0 ,

where Θ0 = −
∂φ0

∂p0
N0 characterizes the rotation of the normal N0 to the middle

surface ω0.
The boundary conditions on the portion γ2

0 of the lateral surface γ0 can be
obtained formally from the three-dimensional boundary conditions as follows.
As we have

Hκ−1
0 ν0 = ε4H4ν0 + ε5(zH4C0 +H5)ν0 + ... = 0 on Γ2

0,

using (5.13) and (5.21), we get:

(5.27)
∂φ0

∂p0
(n1

t ν0 − 3z m
0
t ν0) = 0 on Γ2

0,
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(5.27)
[cont.]

∂φ0

∂p0
Π0Σ

4Π0ν0 + z
∂φ0

∂p0
(n1

t − 3zm
0
t )C0ν0 +NA

∂φ0

∂p0
ν0

+
1

2

(
∂U1

∂p0
− z

∂φ0

∂p0
K0
t

)
(n1

t − 3zm
0
t )ν0 = 0 on Γ2

0.

The first equation of (5.27) leads to:

(5.28) n1
t ν0 = 0 and m0

t ν0 = 0 on γ2
0 .

Now, multiplying the second equation of (5.27), on the one hand by
∂φ0

∂p0
and on

the other hand by N , using (5.1) and (5.28), we get:

Π0Σ
4Π0ν0 +

1

2
z(n1

t − 3zm
0
t )C0ν0 = 0 and A

∂φ0

∂p0
ν0 = 0 on Γ2

0.

Then using (5.16), the integration upon the thickness of the above equations
leads to:

(5.29)

1∫

−1

Π0Σ
4Π0ν0 dz −m0

tC0ν0 = 0 on γ2
0 ,

M
∂φ0

∂p0
ν0 − divt3

(
m0
t

∂φ0

∂p0

)
∂φ0

∂p0
ν0 = 0 on γ2

0 ,

where M = g+ − g− +

∫ 1

−1
zf dz.

According to (5.25) and (5.28), the first equation of (5.29) becomes:

χν0 −m0
tC0ν0 = 0.

Finally using (5.26), the second equation of (5.29) reduces to

M
∂φ0

∂p0
ν0 − div (m

0
t )ν0 = 0 on γ2

0

which concludes the proof of Result 3. 2
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5.1.3. Nonlinear model with coupling effects. The model obtained in Result 3
is not usable numerically. It contains three unknowns φ0, φ1 and φ2 coupled
together in the tensor χ. However, its associated weak formulation enables to
reduce the numbers of unknowns. Indeed, let us define the following admissible
spaces of mappings and displacements :

(5.30)

V (ω0) =
{
U : ω0 → R

3, “smooth”, U = 0 on γ1
0

}
,

V φ0

inex(ω0) =

{
U ∈ V (ω0),

∂φ0

∂p0

∂U

∂p0
+
∂U

∂p0

∂φ0

∂p0
= 0 in ω0

}
,

Qinex(ω0) =

{
φ ∈ Iinex,

∂φ

∂p0
N0 = 0 on γ1

0

}
,

where Iinex is defined by (5.2).
Thus, the two-dimensional equations of Result 3 can be written in the fol-

lowing weak formulation:

Result 4.

(φ0, U1) ∈ Qinex(ω0)× V (ω0) is solution of the weak problem:

∫

ω0

Tr
(
n1
t δ∆

1
t +m0

t δK
0
t

)
dω0 =

∫

ω0

(pδU1 − Tr(C0)Mδφ0 +MδN)dω0

∀ (δφ0, δU1) ∈ V φ0

inex(ω0)× V (ω0)

with:

n1
t =

4β

2 + β
Tr (∆1

t )I0 + 4∆
1
t , 2∆1

t =
∂φ0

∂p0

∂U1

∂p0
+
∂U1

∂p0

∂φ0

∂p0
,

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
K0
t , K0

t = C̃ − C0 and C̃ = −
∂φ0

∂p0

∂N

∂p0
,

p = g+ + g− +

1∫

−1

f dz, M = g+ − g− +

∫ 1

−1
zf dz.

The proof of this result is long and technical, hence will not be reported. It is
based on the successive use of the Stokes formula.

2
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5.1.4. Interpretation of this coupling model. In Result 4, we have obtained a
two-dimensional shell model which couples membrane and bending effects. In
this model, the resultant mapping of the middle surface of the shell is:

φ̃ = φ0 + εU1

and the resultant displacement of a point p0 is represented in the following figure:

Fig. 2. Decomposition of the displacement at a material point p0 of ω0.

Thus, the displacement can be split into:
• an inextensional mapping φ0.
• a small displacement εU 1.

On the other hand, in the coupling model of Result 4, the unknowns φ0 and
U1 generate two kind of strain :
• a nonlinear pure bending strain K0

t due to φ0

• a membrane strain ∆1
t due to the displacement U 1.

In fact, the strain ∆1
t can be written as

(5.31) ∆1
t =

∂φ0

∂p0
∆1
φ0

∂φ0

∂p0

where ∆1
φ0 =

1

2

(
Π
∂U1

∂p
+Π

∂U1

∂p

)
is the linear strain due to U 1 and calculated

at the point p = φ0(p0) of the deformed surface φ0(ω0). Thus ∆1
t corresponds to

the pull-back on ω0 of the linear strain ∆1
φ0 due to U1.
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This coupled model is to our knowledge a new nonlinear shell model which
couples membrane and bending effects. For a non-inhibited shell it is possible
to prove formally that this model and the nonlinear Koiter’s one have the same
limit when ε tends towards zero. Thus, this new coupling model is an approxi-
mation of the nonlinear Koiter’s one for non-inhibited shells. In the linear case,
an asymptotic analysis of Koiter’s model has been made in [19][20]. However,
the only two models which are obtained are the linear membrane and the pure
bending ones.

5.2. The nonlinear pure bending model

In this section we consider a shell, still inhibited in the nonlinear range, but
subjected to a moderate force level G = F = ε3. Then we prove that for this
force level, the asymptotic expansion of equations leads to the classical nonlinear
pure bending model.

We recall that the spaces V φ0

inex(ω0) and Qinex(ω0) are defined in (5.30). We
then have the following result:

Result 5.

For a shell inhibited in the nonlinear range and subjected to a moderate
force level G = F = ε3, the leading term φ0 of the expansion of the mapping φ
depends only on p0 and is solution of the nonlinear pure bending model:

φ0 ∈ Qinex(ω0),

∫

ω0

Tr
(
m0
t δK

0
t

)
dω0 =

∫

ω0

pδφ0 dω0 ∀ δφ0 ∈ V φ0

inex(ω0)

where:

m0
t =

4β

3(β + 2)
Tr (K0

t ) I0 +
4

3
K0
t , K0

t = C̃ − C0, C̃ = −
∂φ0

∂p0

∂N

∂p0
,

p =

+1∫

−1

f dz + g+ + g−,

and where N denotes the normal to the deformed configuration φ0(ω0).

P r o o f. For the moderate force level considered here, following the proof

of Result 4, we obtain the same weak formulation with

∫ 1

−1
p δφ0 dω0 as the

right side:
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(φ0, U1) ∈ Qinex(ω0)× V (ω0) satisfies:

(5.32)

∫

ω0

Tr
(
n1
t δ∆

1
t +m0

t δK
0
t

)
dω0 =

∫

ω0

pδφ0 dω0

∀ (δφ0, δU1) ∈ V φ0

inex(ω0)× V (ω0).

Now, if we choose δφ0 = 0 in this weak formulation, we obtain

∫

ω0

Tr
(
n1
t δ∆

1
t

)
dω0 = 0 ∀ δU1 ∈ V (ω0),

which leads to

(5.33) 2∆1
t =

∂φ0

∂p0

∂U1

∂p0
+
∂U1

∂p0

∂φ0

∂p0
= 0

according to the definition of n1
t (see Result 4). Finally, as∆1

t = 0 we have n1
t = 0

and the weak formulation (5.32) leads to the classical pure bending model.
2

Thus we have justified the nonlinear pure bending model for a non-inhibited
shell subjected to a moderate force level. The intrinsic approach used here makes
clearly appear the curvature change K0

t = C̃ − C0, difference between the pull-
back of the final curvature and the initial curvature. This nonlinear pure bending
model has been justified also in [11] using a description of the middle surface of
the shell in local coordinates. However, in this case the expression of K0

t which
is obtained is difficult to interpret.

Finally let us notice that the existence of solutions of the pure bending model
has recently been studied in [3]. However, the eventual uniqueness of the solution
is still to be proved.

5.3. The linear pure bending model for linearly non-inhibited shells

We now consider a shell, still non-inhibited in the nonlinear range, but sub-
jected to a low force level G = F = ε4. It is then necessary to distinguish the
linearly non-inhibited from the linearly inhibited shells as well.

We will prove here that for linearly non-inhibited shells6) subjected to the
low force level considered here, the displacements are of the thickness order and
the asymptotic model that we obtain is the linear pure bending one.

6)Still non-inhibited in the nonlinear range.
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5.3.1. New reference scales for the displacement field. We begin to prove that
the leading term U 0 of the expansion of the displacement vector is equal to zero.
Indeed, for a low force level G = F = ε4, we obtain the nonlinear pure bending
model of Result 5 without a right side whose associated minimization problem
is the following one:

Find φ0 which minimizes in Qinex(ω0) the functional J (φ) =

∫

ω0

α dω0,

with

α =
2β

3(β + 2)
Tr(K)2 +

2

3
Tr(K2), K = C̃ − C0, C̃ = −

∂φ

∂p0

∂N

∂p0
,

were N denotes the unit normal to φ(ω0).

The solutions of this problem are the mappings φ0 which satisfy

K0
t = C̃ − C0 = 0.

As φ0 is an inextensional mapping which satisfies

∂φ0

∂p0

∂φ0

∂p0
− I0 = 0 in ω0

the rigid motion lemma implies that φ0 = iω0
. We have in particular

∂φ0

∂p0
= I0

and N = N0. Thus, the leading term of the expansion of the displacement
satisfies U0 = φ0 − iω0

= 0. Moreover, according to (5.11) and (5.33), we get:

(5.34)
∂̂U1

∂p0
+
∂̂U1

∂p0
= 0 and U2 = φ2 = U2 − z

∂U1

∂p0
N0

where U1 and U2 only depend on p0 and where
∂̂

∂p0
= Π0

∂

∂p0
denotes the

covariant derivative on ω0.

As we have proved that U 0 = 0, we get

U =
U∗

Ur
=
U∗

L0
= εU1 + ε2U2 + · · ·

which is equivalent to :

Ũ =
U∗

εUr
=
U∗

h0
= U1 + εU2 + · · · = Ũ0 + εŨ1 + ε2Ũ2 + · · ·
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Accordingly, for this low force level, the reference scale Ur = L0 of the displace-
ment is not properly chosen. We must consider Ur = h0 for the leading term
of the displacement to be different from zero. So the dimensionless equilibrium
equations must be written again with Ur = h0 as the new reference scale. The
dimensionless displacement will still be noted with U . This new dimensional
analysis does not modify the dimensionless equations (3.5) but only the compo-
nents of F , E, Σ and H, where U must be changed into εU . In particular, the
expression (3.3) of the tangent mapping F becomes:

(5.35) F = εI3 + ε2
∂U

∂p0
κ−1 + ε

∂U

∂z
N0.

A new expansion of the displacement is then equivalent to change U i into U i−1

for i ≥ 1 in the previous results. In particular, expressions (5.34) become:

(5.36) 2∆0
t =

∂̂U0

∂p0
+
∂̂U0

∂p0
= 0 and U1 = U1 − z

∂U0

∂p0
N0

where U0 and U1 only depend on p0.
On the other hand, with this new reference scale of the displacement, the

first non-zero terms of the expansion of F , E, Σ and H can be calculated from
(3.3), (3.4) and (5.35) as follows:

(5.37)

F 1 = I3, F 2 =
∂U0

∂p0
+Θ0N0,

F 3 =
∂U2

∂z
N0 +

∂U1

∂p0
+ z

(
∂Θ0

∂p0
+
∂U0

∂p0
C0

)
,

2E3 = F 3 + F 3 + F 2F 2 and Σ4 = H5 = βTr(E4)I3 + 2E
4

where Θ0 = −
∂U0

∂p0
N0.

5.3.2. Asymptotic expansion of equations. For the low force level considered
here, the displacement is of the thickness order and we have the following result:

Result 6.

For a shell non-inhibited in the nonlinear and in the linear range, subjected
to a low force level G = F = ε4, the leading term U 0 of the new expansion of U
depends only on p0 and satisfies the conditions:
i) U0 is a linearly inextensional mapping which verifies:

2∆0
t =

∂̂U0

∂0
+
∂̂U0

∂0
= 0 in ω0,
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ii) U0 is solution to the problem:

divt3
(
χ+ C0m

0
t + div(m

0
t )N0

)
= −p in ω0,

U0 = Θ0 = 0 on γ1
0 ,

χν0 +m0
tC0ν0 = m0

t ν0 = div(m
0
t )ν0 = 0 on γ2

0 ,

where χ is a field of symmetrical tensor which depends on U 0, U1 and U2, where
N0 denotes the normal to the initial configuration ω0, and where :

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
K0
t ,

2K0
t =

∂̂Θ0

∂p0
+
∂̂Θ0

∂p0
+
∂̂U0

∂p0
C0 + C0

∂̂U0

∂0
,

Θ0 = −
∂U0

∂p0
N0, p =

1∫

−1

f dz + g+ + g− .

Before giving the proof of this result, let us notice that the expression of the field
of symmetrical tensors χ, which is complex and depends on U 0, U1 and U2, is
not given explicitly. As in Result 3, it is not necessary because it will vanish in
the associated weak formulation (see the next result).

P r o o f. The proof of this result is similar to the previous one. It can also
be split into five steps.

i) Computation of H5

By using (5.37), problem P5 reduces to :

∂N0H
5

∂z
= 0 in Ω0 and H5

±
N0 = ±g

± on Γ±0

which implies that

(5.38) N0H
5 = 0 in Ω0

Equivalently, according to (5.37) we get:

(5.39) N0Σ
4 = βTr(E4)N0 + 2N0E

4 = 0 in Ω0

where E4 is given by:

(5.40) 2E4 = F 3 + F 3 + F 2F 2 =
∂U2

∂z
N0 +N0

∂U2

∂z
+ 2(∆1 + zK0)
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with

(5.41)

2∆1 =
∂U1

∂p0
+
∂U1

∂p0
+
∂U0

∂p0

∂U0

∂p0
+
∂U0

∂p0
Θ0N0

+N0Θ0
∂U0

∂p0
+
∣∣∣∣Θ0

∣∣∣∣2N0N0,

2K0 =
∂Θ0

∂p0
+
∂Θ0

∂p0
+
∂U0

∂p0
C0 + C0

∂U0

∂p0
.

Thus equation (5.39) enables us to calculate ∂U 2/∂z. Indeed we get:

(5.42)
∂U2

∂z
= −

1

β + 2

[
βTr(∆1 + zK0)

+ 2N0(∆
1 + zK0)N0

]
N0 − 2Π0(∆

1 + zK0)N0.

Replacing the expression (5.42) of ∂U 2/∂z in (5.40), and decomposing ∆1 and
K0 into Tω0 ⊕ RN0, we obtain :

(5.43) E4 = −
β

β + 2
Tr (∆1

t + zK0
t )N0N0 + (∆

1
t + zK0

t )

with :

(5.44)

2∆1
t = 2Π0∆

1Π0 =
∂̂U1

∂p0
+
∂̂U1

∂p0
+
∂U0

∂p0

∂U0

∂p0
,

2K0
t = 2Π0K

0Π0 =
∂̂Θ0

∂p0
+
∂̂Θ0

∂p0
+
∂̂U0

∂p0
C0 + C0

∂̂U0

∂p0
.

Hence the expression of H5 becomes:

(5.45) H5 = Σ4 =
1

2
(n1

t + 3zm
0
t )

where:

(5.46)

n1
t =

4β

β + 2
Tr(∆1

t )I0 + 4(∆
1
t ),

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
(K0

t ).
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ii) Characterization of U 1

Using (5.37), problem P6 can be reduced to :

(5.47)
divt3(Π0H

5) +
∂N0H

6

∂z
= 0 in Ω0,

H6
±
N0 = 0 on Γ±0 .

Then, according to (5.45), an integration upon the thickness leads to

(5.48) divt3(n
1
t ) = 0 in ω0

whose solutions verify

(5.49) 2∆1
t =

∂̂U1

∂p0
+
∂̂U1

∂p0
+
∂U0

∂p0

∂U0

∂p0
= 0.

Finally, taking into account (5.49), expression (5.45) reduces to:

(5.50) H5 = Σ4 =
3

2
z m0

t .

iii) Expression of H6

Now let us integrate the Eq. (5.47) of problem P6 with respect to z. We get:

(5.51) N0H
6 =

3(1− z2)

4
divt3(m

0
t ).

Thus H6 can be written as :

(5.52) H6 = Π0H
6 +N0N0H

6 = Π0H
6 +

3(1− z2)

4
N0 divt3(m

0
t ).

On the other hand, according to (5.37), we have:

(5.53) H6 = Σ5 +Σ4F 2.

Hence (5.52) can be written as :

(5.54) H6 = Π0Σ
5 +Π0Σ

4F 2 +
3(1− z2)

4
N0 divt3(m

0
t )

= Π0Σ
5Π0 +Π0Σ

5N0N0 +
3

2
zm0

t

∂U0

∂p0
+
3(1− z2)

4
N0 divt3(m

0
t ),
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where F 2 and Σ4 have been replaced by their expressions (5.37) and (5.50).

On the other hand, multiplying (5.53) by N0 and using (5.39), we get:

Σ5N0 =
3(1− z2)

4
divt3(m

0
t )

because Σ5 is symmetrical.
Eventually, the expression (5.54) of H6 becomes:

(5.55) H6 = Π0Σ
5Π0 +

3

2
z m0

t

∂U0

∂p0

+
3(1− z2)

4

(
Π0divt3(m

0
t )N0 +N0 divt3(m

0
t )
)
.

iv) Equilibrium equations

The cancellation of the factor of ε7 in the expansion of Eq. (3.5) leads to prob-
lem P7:

(5.56)

divt3(Π0H
6 + z C0H

5)− Tr(C0)N0H
6 − z div (C0)Π0H

5 +
∂N0H

7

∂z

= −f in Ω0,

H7
±
N0 = ±g

± in Γ±0 .

By using (5.50) and (5.55), an integration upon the thickness leads to:

(5.57) divt3




1∫

−1

Π0Σ
5Π0 dz + C0m

0
t +Π0divt3(m

0
t )N0




− Tr(C0)divt3
(
m0
t

)
− div(C0)m

0
t = −p in ω0

where p =
∫ +1
−1f dz + g+ + g−.

Finally, using the following properties of the divergence divt3:

divt3(m
0
t )Π0 = div(m

0
t )

and

Tr(C0)divt3
(
m0
t

)
+ div(C0)m

0
t = divt3

(
Tr(C0)m

0
t

)
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we transform the last equation into:

(5.58) divt3
(
χ+ C0m

0
t + div(m

0
t )N0

)
= −p in ω0

which constitutes the equilibrium equation of Result 6 with:

(5.59) χ =

1∫

−1

Π0Σ
5Π0 dz − Tr(C0)m

0
t .

We recall that χ is a field of symmetrical tensors.

v) Boundary conditions

To conclude the proof, let us examine the boundary conditions. The clamped
condition U = 0 on Γ0 easily leads to :

(5.60) U0 = Θ0 = 0 on γ1
0 .

The boundary conditions on γ2
0 can be obtained from the expansion of the con-

dition Hκ−1
0 ν0 = 0. Taking into account expressions (5.50) and (5.55) of H5 and

H6, we get:

z m0
t ν0 = 0 on Γ2

0,

(5.61) Π0Σ
5Π0ν0 +

3(1− z2)

4
N0 divt3(m

0
t )ν0

+
3z

2

∂U0

∂p0
m0
t ν0 +

3z2

2
m0
tC0ν0 = 0 on Γ2

0.

The first equation of (5.61) directly leads to

(5.62) m0
t ν0 = 0 on γ2

0 .

Let us project the second equation onto Tω0 and the normal N0, and integrate
the two equations obtained upon the thickness. Taking into account (5.62), we
obtain

(5.63)

1∫

−1

Π0Σ
5Π0 dz ν0 +m0

tC0ν0 = 0 and div(m0
t )ν0 = 0 on γ2

0 ,

where we have used the property divt3(m
0
t )ν0 = divt3(m

0
t )Π0ν0 = div(m

0
t )ν0.
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Finally, taking into account (5.62), the first equation of (5.63) is equivalent to:

χν0 +m0
tC0ν0 = 0 on γ2

0

where χ is given by (5.59). This concludes the proof of Result 6.
2

Remark 1.

Let us notice that if we decompose U 0 on Tω0 ⊕ RN0 as follows:

U0 = V 0 + u0N0,

then ∆0
t and K0

t can be written as:

∆0
t =

1

2

(
∂̂V 0

∂p0
+
∂̂V 0

∂p0

)
− u0C0

and

K0
t =

1

2

(
∂̂Θ0

∂p0
+
∂̂Θ0

∂p0
+
∂̂V 0

∂p0
C0 + C0

∂̂V 0

∂p0
− u0C2

0

)

with Θ0 = −
∂u0

∂p0
− C0V

0. We then recognize the classical expressions of the

linear membrane strain ∆0
t and of the linear curvature change K0

t .

5.3.3. The linear pure bending model. Let us define the space of linear inexten-
sional displacements :

(5.64) Vinex(ω0) =

{
U : ω0 → R

3 “smooth”,
∂̂U

∂p0
+
∂̂U

∂p0
= 0 in ω0

and U =
∂U

∂p0
N0 = 0 on γ1

0

}
.

Then equations of Result 6 can be written in the following weak formulation:

Result 7.

For a shell non-inhibited in the nonlinear and in the linear range, subjected
to a low force level F = G = ε4, the leading term U 0 of the expansion of the
displacement is a solution of the linear pure bending model:

(5.65)

U0 ∈ Vinex(ω0),

∫

ω0

Tr(m0
t δK

0
t )dω0 =

∫

ω0

pδU0dω0 ∀ δU0 ∈ Vinex(ω0),
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where

2K0
t =

∂̂Θ0

∂p0
+
∂̂Θ0

∂p0
+
∂̂U0

∂p0
C0 + C0

∂̂U0

∂p0
, Θ0 = −

∂U0

∂p0
N0,

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
K0
t and p =

1∫

−1

f dz + g+ + g− .

The proof of this result is similar to the one of Result 4. It is based on the
successive use of the Stokes formula. We just need the restriction δU 0 ∈ Vinex(ω0)
to eliminate χ in the weak formulation of the Result 6.

2

Thus we have justified the linear pure bending model for a non-inhibited shell
in the nonlinear and in the linear range, subjected to a low force level of ε4 order.
For this force level, the displacements are of the thickness order (Ur = h0). This
linear pure bending model has been also justified by asymptotic expansion of the
three-dimensional equations of linear elasticity in [14][15][21]. But contrary to
these works, the linear pure bending model is deduced here from the nonlinear
three-dimensional elasticity.

5.4. Domain of validity of the linear pure bending model

It is possible to prove that for a non-inhibited shell in the nonlinear and in the
linear range, the linear pure bending model is valid for force levels lower than ε4.
Indeed, for a force level F = G = ε5, we would obtain the weak formulation (5.65)
without a right side whose solutions satisfy K0

t = 0. As U0 is an inextensional
displacement in the linear range, the linear version of the rigid motion lemma
implies that U0 = 0. Following the same reasoning as in the previous sections,
we find out that the reference scale of the displacement is not properly chosen.
We have to consider Ur = εh0. Then, a new dimensional analysis and a new
asymptotic expansion of equations lead again to the linear pure bending model.
For the low force level considered here, the problem becomes linear with respect
to the displacement. In fact, with a recurrence on n, we can prove the following
result:

Result 8.

For a non-inhibited shell, in the linear and the nonlinear range, subjected
to low force levels of εn≥4 order, the order of magnitude of the displacement is
Ur = εn−4h0. Moreover, the leading term U 0 of the expansion of the displacement
satisfies equations of the pure bending model of Result 7.
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5.5. The linear membrane model for linearly inhibited shells

We see that for a non-inhibited shell in the nonlinear range subjected to
low force levels of ε4 order and lower, we have to distinguish the linearly non-
inhibited from the linearly inhibited shells. In Subsecs. 5.3 and 5.4, we proved
that for a linearly non-inhibited shell, we obtain the linear pure bending model.
For a linearly inhibited shell, the following result is obtained:

Result 9.

For a non-inhibited shell in the nonlinear range but inhibited in the linear
range, and subjected to low force levels F = G = εn≥4, the magnitude of the
displacement is Ur = εn−2h0. Moreover, the leading term U 0 of the expansion of
the displacement is a solution of the following linear membrane model:

div(n0
t ) = −pt in ω0, Tr(n0

tC0) = −pn in ω0,

U0 = 0 on γ1
0 , n0

t ν0 = 0 on γ2
0 ,

where

n0
t =

4β

2 + β
Tr(∆0

t ) I0 + 4∆
0
t , 2∆0

t =
∂̂V 0

∂p0
+
∂̂V 0

∂p0
− 2u0C0,

pt = g+
t + g−t +

1∫

−1

ftdz and pn = g+
n + g−n +

1∫

−1

fndz.

For the proof of this result, we refer the reader to the next section where the
study is similar.

6. Inhibited shells in the nonlinear range

It must be reminded that for a shell subjected to a severe force level of ε
order, the asymptotic expansion of equations leads to the nonlinear membrane
model whatever the nonlinear rigidity of the middle surface is (see Sec. 4). For
a high force level of ε2 order we had to distinguish the nonlinear inhibited from
the nonlinear non-inhibited shells. In the last section we have completed the
classification for non-inhibited shells, in the nonlinear range.

In this section, we will study the other branch of the classification which
corresponds to inhibited shells in the nonlinear range. In order to do this, we
resume the calculations after the nonlinear membrane model obtained at the
Result 1.
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6.1. The linear membrane model for a high force level

We consider a inhibited shell in the nonlinear range subjected to a high force
level G = F = ε2. We first prove that for this force level, the order of magnitude
of the displacement is Ur = h0 and not L0. Then, a new dimensional analysis
will lead to the linear membrane model.

6.1.1. New reference scale of the displacement. For a force level of ε2 order, we
obtain the weak formulation (4.3) of the Result 2 without a right-hand side,
whose solutions are the inextensional mappings φ0 which satisfy

(6.1)
∂φ0

∂p0

∂φ0

∂p0
= I0 in ω0.

As the shell is assumed to be inhibited in the nonlinear range, the space of
inextensional mappings reduces to identity. Hence we have φ0 = iω0

or equiva-
lently U0 = 0. The expression of N introduced in (4.1) becomes N = N0 and we
still have:

(6.2) U1 = U1(p0) in ω0.

Therefore, for this force level, we have to consider Ur = h0 so as U0 to be different
from zero. So we make a new dimensional analysis of Eq. (2.4) with Ur = h0 as
the new reference scale, and we still denote U = U ∗/h0 the new dimensionless
displacement. As in Sec. 5.3, this new dimensional analysis does not modify the
dimensionless Equation (3.5) but only the components of F , E, Σ and H, where
U must be changed into εU . The expression of the tangent mapping F that we
now have to consider is given by (5.35):

(6.3) F = εI3 + ε2
∂U

∂p0
κ−1 + ε

∂U

∂z
N0.

A new expansion of the displacement is then equivalent to change U i into U i−1

for i ≥ 1 in the previous results. In particular (6.2) gives us

(6.4) U0 = U0(p0).

On the other hand, with this new reference scale for the displacement, we must
calculate again the first non-zero terms of the expansions of F , E, Σ and H.
According to (3.3), (3.4) and (6.3), we have F 1 = I3 and:

(6.5)
F 2 =

∂U1

∂z
N0 +

∂U0

∂p0
, 2E = F 2 + F 2,

Σ3 = βTr (E3)I3 + 2E
3, H4 = Σ3.
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6.1.2. Asymptotic expansion. The asymptotic expansion of the new dimension-
less equations leads to the following result:

Result 10.

For a shell inhibited in the non-linear range and subjected to a high force
level G = F = ε2, the leading term U 0 = (V 0, u0) of the expansion of U = (V, u)
only depends on p0 and satisfies the linear membrane model :

div(n0
t ) = −pt in ω0, Tr(n0

tC0) = −pn in ω0,

U0 = 0 on γ1
0 , n0

t ν0 = 0 on γ2
0 .

where the expressions of n0
t , ∆

0
t , pt and pn are those of Result 9.

P r o o f. The proof is split into two steps.
i) Determination of U1

The cancellation of the factor of ε4 in the new expansion of the dimensionless
equilibrium Eq. (3.5) leads tothe new problem P4 :

∂H
4
N0

∂z
= 0 in ω0,

[
H4N0

]±
= 0 on Γ±0 ,

which implies that H4N0 = 0 or equivalently that:

(6.6) βTr(E3)N0 + 2E
3N0 = 0 in ω0

in view of (6.5). On the other hand, we have:

2E3 = F 2 + F 2 =
∂U1

∂z
N0 +N0

∂U1

∂z
+
∂U0

∂p0
+
∂U0

∂p0
.

Now if we decompose
∂U0

∂p0
as follows:

∂U0

∂p0
= Π

∂U0

∂p0
+N0N0

∂U0

∂p0

we get:

Tr(E3) = N0
∂U1

∂z
+Tr(∆0

t ) and 2E3N0 =
∂U1

∂z
+

(
N0

∂U1

∂z

)
N0+

∂U0

∂p0
U0N0,
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with 2∆0
t = Π0

∂U0

∂p0
+ Π0

∂U0

∂p0
. According to the Remark 1, ∆0

t corresponds to

the classical linear membrane strain.
Thus (6.6) can be written as:

β

(
N0

∂U1

∂z
+Tr(∆0

t )

)
N0 +

∂U1

∂z
+

(
N0

∂U1

∂z

)
N0 +

∂U0

∂p0
N0 = 0

and the projection of this equation onto Tω0 and N0 gives us:

Π0
∂U1

∂z
= −

∂U0

∂p0
N0 and N0

∂U1

∂z
= −

β

β + 2
Tr(∆0

t )

which leads to:
∂U1

∂z
= −

∂U0

∂p0
N0 −

β

β + 2
Tr(∆0

t )N0.

As U0 depends only on p0 according to (6.4), we get finally:

(6.7) U1 = U1 − z

(
∂U0

∂p0
N0 +

β

β + 2
Tr(∆0

t )N0

)

where U1 only depends on p0.

The expressions of E3, Σ3 and H4 can also be calculated from (6.5). We get:

(6.8) E3 = ∆0
t −

β

β + 2
Tr(∆0

t ) N0N0 and Σ3 = H4 =
1

2
n0
t

where n0
t =

4β

β + 2
Tr (∆0

t )I0 + 4∆
0
t .

ii) Linear membrane equations

Problem P5 then reduces to:

divt3(Π0H
4) +

∂H5N0

∂z
= −f in Ω0,

[
H5N0

]±
= ±g± on Γ±0 .

Using (6.8), an integration upon the thickness of the above equations leads to:

(6.9) divt3(n
0
t ) = −p in ω0
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where p = g++ g−+

∫ +1

−1
fdz. As n0

t is a field of endomorphims on Tω0, we can

decompose easily divt3(n
0
t ) into Tω0 ⊕ RN0. The last equation then becomes:

div(n0
t ) + Tr(n

0
tC0)N0 = −p on ω0

which leads to the two classical equations of the membrane model of Result 10:

div(n0
t ) = −pt and Tr(n0

tC0) = −pn in ω0.

Finally, the boundary conditions on γ1
0 and γ2

0 can be obtained easily from the
expansion of the three-dimensional boundary conditions on Γ1

0 and Γ2
0. This

concludes the proof of Result 10.
2

6.1.3. Weak formulation. Let us define the following space of admissible dis-
placements :

V (ω0) =
{
U : ω0 → R

3, “smooth”, U = 0 on γ1
0

}

Then the linear membrane equations can be written in the following weak for-
mulation :

Result 11.

The displacement U 0 ∈ V (ω0) satisfies:

(6.10)

∫

ω0

Tr(n0
t δ∆

0
t ) dω0 =

∫

ω0

pδU0, ∀ δU0 ∈ V (ω0)

where p = pt + pnN0.

This weak formulation is identical to the one obtained by asymptotic ex-
pansion from the linear three-dimensional elasticity, with an intrinsic approach
[4][5][7] or with a description of the shell in local coordinates [14]. But contrary
to these other justifications, the linear membrane model is deduced here from
the nonlinear equilibrium three-dimensional equations without any assumption
on the scalings concerning the displacements.

6.2. The linear membrane model still valid for linearly inhibited shells

For moderate and lower force levels, we have now to distinguish the linearly
inhibited from the linearly non-inhibited shells. For linearly inhibited shells we
have the following result:
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Result 12.

For a shell inhibited in the linear and the nonlinear range, the linear mem-
brane model is still valid for force levels of εn≥3 order. For these force levels, the
order of magnitude of the displacement is Ur = h0ε

n−2.

The proof can be obtained with a recurrence on n. The main step is to solve
the weak formulation (6.10) without a right side. Considering the associated
minimization problem, we obtain that U 0 is an inextensional displacement in
the linear range. As the shell is linearly inhibited, we have U 0 = 0. Following
the proof of Result 10, a new dimensional analysis with Ur = εh0 and a new
asymptotic expansion of equations lead again to the linear membrane model, with
or without a right side, according to the considered force level. This operation
can be repeated until we find U 0 6= 0. Finally, using a recurrence on n, we find
that for force levels of εn≥3 order, the order of magnitude of the displacement is
Ur = h0ε

n−2, and the asymptotic model obtained is the linear membrane one.
2

6.3. Domain of validity of the linear membrane model

We proved in Result 10 that the linear membrane model is valid for an
inhibited shell in the non-linear range, subjected to a high force level of ε2 order.
For moderate and lower force levels of εn≥3, this model is still valid if the shell
is inhibited in the linear range as well.

We recall that in the Subsec. 5.5, we have proved that this linear membrane
model is also obtained for a non-inhibited shell in the nonlinear range but linearly
inhibited, subjected to low force levels of εn≥4 order. Thus, the linear membrane
model is valid for a linearly inhibited shell subjected to low force levels of εn≥4

order, whatever the nonlinear geometric rigidity is.

6.4. Two other models for linearly non-inhibited shells

We study now the last case: a shell subjected to moderate and low force
levels, linearly non-inhibited, but always inhibited in the nonlinear range. The
asymptotic expansion of the three-dimensional equilibrium Equation (3.5) leads
to calculations similar to the ones of the previous sections. Thus we only give
here the asymptotic models which are obtained.

6.4.1. Another coupling model for a moderate force level. For a moderate force
level F = G = ε3, the order of magnitude of the displacement is Ur = h0 and
the two first terms U 0 and U1 of the expansion of the displacement are solution
of a variational problem which couples membrane and bending effects.
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Let us recall the definition of the following admissible spaces of displacements:

V (ω0) =
{
U : ω0 → R

3, “smooth”, U = 0 on γ1
0

}
,

Vinex(ω0) =

{
U ∈ V (ω0),

∂̂U

∂p0
+
∂̂U

∂p0
= 0 in ω0 and

∂U

∂p0
N0 = 0 on γ1

0

}
.

Then we have the following result :

Result 13.

For a shell inhibited in the nonlinear range but linearly non-inhibited, sub-
jected to a moderate force level F = G = ε3, (U0, U1) ∈ Vinex(ω0) × V (ω0) and
satisfies the following weak problem:

∫

ω0

Tr
(
n1
t δ∆

1
t +m0

t δK
0
t

)
dω0 =

∫

ω0

(pδU1 − Tr(C0)MδU0 +MδΘ0)dω0

∀ (δU0, δU1) ∈ Vinex(ω0)× V (ω0)

with:

n1
t =

4β

2 + β
Tr(∆1

t )I0 + 4∆
1
t , 2∆1

t =
∂̂U1

∂p0
+
∂̂U1

∂0
+
∂U0

∂p0

∂U0

∂p0
,

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
K0
t , K0

t =
∂̂Θ0

∂p0
+
∂̂Θ0

∂p0
+
∂̂U0

∂p0
C0 + C0

∂̂U0

∂p0
,

p = g+ + g− +

1∫

−1

f dz, M = g+ − g− +

1∫

−1

zf dz.

For the proof of this result, which is similar to the one of Result 4, we refer the
reader to Sec. 5.1.

2

This coupling model is similar to the one obtained in Result 4, with different
expressions of the strain mesures K0

t and ∆1
t . Here K0

t is the linear classical
variation of curvature. The coupling between U 0 and U1 is contained in the non-
classical membrane strain ∆1

t , which is linear with respect to U 1 but nonlinear
with respect to U 0.

The physical interpretation of this model is also similar to the one of Result 4.
The solution of this model is the displacement U 0 + εU1, where U0 is a linear
inextensional displacement which generates the curvature variation K0

t , and εU1

a small displacement which generates with U 0 the nonlinear membrane strain∆1
t .
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6.4.2. The linear pure bending model for low force levels. Let us consider to
finish a shell subjected to low force levels F = Gg = εn≥4. Then we have the
following result:

Result 14.

For a shell inhibited in the nonlinear range but linearly non-inhibited, and
subjected to low force levels F = G = εn≥4, the order of magnitude of the
displacement is Ur = h0ε

n−4. Moreover the leading term U 0 of the expansion of
the displacement is a solution of the linear pure bending model of Result 7.

For the proof of this result, we refer the reader to Sec. 5.3 where the calcu-
lations are similar.

2

Thus, according to Result 8, the linear pure bending model is valid for a linearly
non-inhibited shell subjected to low force levels of εn≥4 order, whatever the
non-linear geometric rigidity is. We find again the classical results obtained in
[14][21][22] from linear elasticity.

7. Conclusion

In the second part of this paper we have established a classification of asymp-
totic models for strongly curved shells. The results are different from those ob-
tained in the first part for shallow shells [10]. In particular, for the same force
level, the obtained behaviour depend on the geometric rigidity of the middle
surface of the shell, in the linear and in the nonlinear range.

As in the first part, we have studied only one combination of (Ft,Fn,Gt,Gn)
for each value of τ = Max(Ft,Fn,Gt,Gn). However, the study of the other com-
binations is not fundamental; it would lead to the same two-dimensional mod-
els with a right side slightly different. The following table resumes the so ob-
tained classification with respect to τ , where the abbreviation L.I.S.(respectively
N.L.I.S) means linearly inhibited shell (respectively nonlinearly inhibited shell):
with:

n0
t =

4β

β + 2
Tr(∆0

t )I0 + 4∆
0
t , n1

t =
4β

β + 2
Tr(∆1

t )I0 + 4∆
1
t ,

m0
t =

4β

3(β + 2)
Tr(K0

t )I0 +
4

3
K0
t , Θ0 = −

∂U0

∂p0
N0,

p =

∫

ω0

f dz + g+ + g−, M =

∫

ω0

z f dz + g+ − g− .



Table 1. Non-inhibited shells in the nonlinear range.

τ Ur Shell model ∆0

t , K
0

t

ε L0

nonlinear membrane model

φ0
∈ Q(ω0) and ∀ δφ0

∈ V (ω0)
∫

ω0

Tr(n0

t δ∆
0

t ) dω0 =

∫

ω0

pδφ
0
dω0

2∆0

t =
∂φ0

∂p0

∂φ0

∂p0

− I0

ε2 L0

nonlinear coupling model

(φ0, U1) ∈ Qinex(ω0)× V (ω0)

∫

ω0

Tr(n1

t δ∆
1

t +m
0

t δK
0

t ) dω
0 =

∫

ω0

(pδU1
− Tr(C0)Mδφ

0 +MδN)dω0

∀ (δφ0, δU1) ∈ V
φ0

inex
(ω0)× V (ω0)

2∆1

t =
∂φ0

∂p0

∂U1

∂p0

+
∂U1

∂p0

∂φ0

∂p0

K0

t = C̃ − C0

φ0 is inextensional

ε3 L0

nonlinear pure bending model

φ0
∈ Qinex(ω0) and ∀ δφ0

∈ V
φ0

inex
(ω0)

∫

ω0

Tr(m0

t δK
0

t ) dω0 =

∫

ω0

pδU
0
dω0

K0

t = C̃ − C0

φ0 is inextensional

εn≥4 h0ε
n−2

linear membrane model

if L.I.S.

U0
∈ V (ω0) and ∀ δU0

∈ V (ω0)
∫

ω0

Tr(n0

t δ∆
0

t ) =

∫

ω0

pδU
0
dω0

2∆0

t =
∂̂U0

∂p0

+
∂̂U0

∂p0

εn≥4

h0ε
n−4

linear pure bending model

if N.L.I.S.

U0
∈ Vinex(ω0) and ∀ δU0

∈ Vinex(ω0)
∫

ω0

Tr(m0

t δK
0

t ) dω0 =

∫

ω0

pδU
0
dω0

2K0

t =
∂̂Θ0

∂p0

+
∂̂Θ0

∂p0

+
∂̂U0

∂p0

C0

+C0

∂̂U0

∂p0

U0 is linearly inextensional

[215]



Table 2. Inhibited shells in the nonlinear range.

τ Ur Shell model ∆t, Kt

ε L0

nonlinear membrane model

φ0
∈ Q(ω0) and ∀ δφ0

∈ V (ω0)

∫

ω0

Tr(n0

t δ∆
0

t ) dω0 =

∫

ω0

pδφ
0
dω0

2∆0

t =
∂φ0

∂p0

∂φ0

∂p0

− I0

ε2 h0

linear membrane model

U0
∈ V (ω0) and ∀ δU0

∈ V (ω0)

∫

ω0

Tr(n0

t δ∆
0

t ) dω0 =

∫

ω0

pδU
0
dω0

2∆0

t =
∂̂U0

∂p0

+
∂̂U0

∂p0

εn≥3 h0ε
n−2 linear membrane model

if L.I.S.
...

ε3 h0

second coupling model

if N.L.I.S

(U0, U1) ∈ Vinex(ω0)× V (ω0)

∫

ω0

Tr(n1

t δ∆
1

t +m
0

t δK
0

t ) dω0 =

∫

ω0

(pδU1
− Tr(C0)MδU

0 +MδΘ0) dω0

∀ (δU0, δU1) ∈ Vinex(ω0)× V (ω0)

2∆1

t =
∂̂U1

∂0

+
∂̂U1

∂p0

+
∂U0

∂p0

∂U0

∂p0

K0

t =
∂̂Θ0

∂p0

+
∂̂Θ0

∂p0

+
∂̂U0

∂p0

C0

+C0

∂̂U0

∂p0

U0 is linearly inextensional

εn≥4 h0ε
n−4

linear pure bending model

if N.L.I.S.

U0
∈ Vinex(ω0) and ∀ δU0

∈ Vinex(ω0)

∫

ω0

Tr(m0

t δK
0

t ) dω0 =

∫

ω0

pδU
0
dω0

K0

t =
∂̂Θ0

∂p0

+
∂̂Θ0

∂p0

+
∂̂U0

∂p0

C0

+C0

ˆ∂U0

∂p0

U0 is linearly inextensional

[216]
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We recall the definitions of the admissible spaces of mapping and displacements:

V (ω0) =
{
U : ω0 → R

3, “smooth”, U = 0 on γ1
0

}
,

Q(ω0) =
{
φ : ω0 → R

3, “smooth”, φ = iω0
on γ1

0

}
,

Vinex(ω0) =
{
U ∈ V (ω0),

∂̂U

∂p0
+
∂̂U

∂p0
= 0 in ω0 and

∂U

∂p0
N0 = 0 on γ1

0

}
,

V φ0

inex(ω0) =
{
U ∈ V (ω0),

∂φ0

∂p0

∂U

∂p0
+
∂U

∂p0

∂φ0

∂p0
= 0 in ω0

}
,

Qinex(ω0) =
{
φ ∈ Iinex(ω0),

∂φ

∂p0
N0 = 0 on γ1

0

}
,

where the space of inextensional mappings Iinex(ω0) is defined as follows :

Iinex(ω0) =
{
φ : ω0 → R

3, “smooth”,
∂φ

∂p0

∂φ

∂p0
= I0 in ω0, φ = iω0

on γ1
0

}
.

With the approach developed in this paper, the obtained asymptotic shell
models, even the linear ones, have been deduced from the nonlinear three-
dimensional elasticity. This enables us to specify their domain of validity thanks
to the dimensionless numbers naturally introduced. In particular, we proved in
this second part that the linear membrane model (respectively the pure bending
one) is valid for a linearly inhibited (respectively for a linearly non-inhibited)
shell subjected to low force levels of εn≥4 order. We find again the classical re-
sults [14][21][22] obtained here from the nonlinear elasticity. This proves that for
sufficiently low force levels, the membrane strain becomes linear and only the
geometric rigidity in the linear range must be taken into account. However, the
link between the linear and the nonlinear inextensional displacements is still to
study.

On the other hand, in the literature only two nonlinear shell models are
obtained by asymptotic expansion of three-dimensional elasticity: the nonlinear
membrane model [13] and the pure bending one [11]. Contrary to these works, the
systematic study of all the force levels has put here in a prominent position two
other nonlinear shell models which couple the membrane and the bending effects.
These models are different from the usual models of Sanders [23], Naghdi [16],
Schmidt [1], Pietraszkiewicz [18]. This constitutes the constructive character
of the approach presented.
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